Tectonic Setting and Provenance of Sandstones from Triassic Daheba Formation in the West Qinling Orogenic Belt
-
摘要:
大河坝组是西秦岭夏河–碌曲地区出露最晚的一套海相地层,记录了印支期海退事件。笔者基于大河坝组层序特征、砂岩主微量元素成分和碎屑锆石U-Pb年龄基础上,探索其物质来源特征和构造背景指示意义。大河坝组主体为砂板岩复理石建造,包括长石砂岩、岩屑长石砂岩、含砾岩屑长石砂岩等。其中,砂岩具有中等SiO2(64.11%~68.27%,平均为65.45%),较高Al2O3(13.61%~15.19%,平均为14.51%),较低Fe2O3(0.82%~1.72%,平均为1.25%)、CaO (2.39%~3.32%,平均为3.06%)、MgO(0.06%~0.10%,平均为0.08%)特征。稀土元素总量较高,ΣREE值为184×10−6~434×10−6,平均为252×10−6。球粒陨石标准化图解中显示Eu负异常,具有与活动大陆边缘环境相似的Th、Zr、Ti、Co、Ni等微量元素含量。砂岩中碎屑锆石U-Pb年龄主要为2204 ~2520 Ma、1536 ~2067 Ma、253.3~448.7 Ma等3个阶段,在2445 Ma、1986.4 Ma、1757.6 Ma、448.5 Ma、278.2 Ma等5个年龄段出现峰值,锆石最小年龄为253.3 Ma。砂岩主微量元素分析和碎屑锆石U-Pb年代学谱系显示,大河坝组源区构造环境为活动大陆边缘,碎屑物质来自上地壳中性火成岩,主要物源区为研究区北部北秦岭构造带、祁连造山带东段和华北板块南缘基底,少部分碎屑来自西秦岭同期岩浆岩和多旋回沉积物。
Abstract:The Daheba formation is the latest strata exposed in the Xiahe-Luqu area of the West Qinling Orogenic Belt (WQOB), with recording the Indosinian regression event. In this study, based on the stratigraphic sequence characteristics, major and trace element compositions and zircon U-Pb dating of the sandstone, we traced the origin of the sandstone and explored the tectonic settings of the Daheba Formation. The Daheba Formation consists of feldspar sandstone, lithic feldspar sandstone, conglomerate clastic feldspar sandstone. The SiO2 content of sandstone range from 64.11% to 68.72% with an average of 65.45%. The sandstones are also characterized by high Al2O3 (13.61%~15.19%), lower Fe2O3 (0.82%~1.72%), CaO (2.393%~3.32%) and MgO (0.06%~0.1%) contents. They have high rare earth elements (REE) range from 184.13×10−6 to 434.06×10−6, and show negative Eu anomaly in the chondrite normalized diagram. They also have similar Th, Zr, Ti, and Co, Ni compositions with that of active continental margin sediments. The detrital zircon U-Pb ages from the sandstones are mainly concentrated in 253.3~448.7 Ma, 1536~2067 Ma and 2204~2520 Ma, and show five age peaks at 278.2 Ma, 448.5 Ma, 1757.6 Ma, 1986.4 Ma and 2445 Ma, with the youngest ages at 253.3 Ma. These indicates that the Daheba Formation was deposited in an active continental margin setting, and the detritus originated from the upper crust igneous rocks. The main sources for the detritus is possibly of the basement of the northern Qinling, the eastern part of the Qilian, and the southern edge of the North China Plate in the northern parts of the study area with small parts from the magmatic rocks and polycyclic sediments in the West Qinling.
-
Keywords:
- Daheba formation /
- detrital zircon /
- tectonic setting /
- provenance /
- West Qinling Orogenic Belt
-
甘肃省夏河–碌曲地区位于青藏高原东北缘、西秦岭造山带西段,是华北、扬子、羌塘等地块以及祁连、松潘等造山带交汇地带(图1a)(潘桂棠等,1997;许志琴等,2006)。秦岭造山带以商丹带和勉略带两条古蛇绿构造混杂岩带,将秦岭划分为华北板块、秦岭微板块和扬子板块(张国伟等,1995;王宗起等,2009)。西秦岭造山带为秦岭造山带的西延部分(姜寒冰等,2023),位于文县–徽成盆地–凤太盆地一线以西,东侧为东秦岭造山带,北以宝鸡–天水–武山–临夏为界与祁连造山带相邻,南以玛沁–文县–勉县–略阳为界与松潘–甘孜地块过渡衔接,西与柴达木和昆仑造山带毗邻。西秦岭造山带自新元古代以来,大致经历了Rodinian超大陆裂解,秦祁昆大洋形成,俯冲碰撞造山,板内伸展和陆内叠覆造山等5个演化阶段(冯益民等,2003;李平等,2023)。古生代末—三叠纪,“三板块”(华北、秦岭、扬子板块)沿“两缝合带”(商丹带、勉略带)依次向北俯冲碰撞,最终全面碰撞转入板内造山阶段。与此同时,出现了强烈的褶皱、断裂、区域变质作用以及岩浆活动,西秦岭总体构造轮廓在此次运动中基本完成(殷鸿福等,1993;张国伟等,1995;Zhang,2000)。三叠纪以来的印支运动导致大规模海退,扬子板块和华北板块接触碰撞,西秦岭三叠纪盆地由东向西剪刀式闭合,于晚三叠世后期褶皱隆起成陆(殷鸿福等,1988;王汉辉等,2023)。大河坝组是该地区时代最晚的一套海相地层,反映了古特提斯海退过程,但是针对性研究极少。李智斌等(2021)通过少量的岩石化学分析认为大河坝组源区构造背景为大陆岛弧。陈岳龙等(2008)对研究区以东临潭–舟曲一带的三叠系碎屑锆石U-Pb年龄认为物源总体来自盆地北部。笔者通过系统分析西秦岭夏河–碌曲地区中晚三叠统大河坝组碎屑岩的岩石学、地球化学、锆石U-Pb同位素特征,探讨物源区构造背景和属性,为研究区域构造演化、古特提斯洋沉积和海退过程提供证据。
1. 地质背景
研究区地层呈NW向带状展布,向西散开为扫帚状,整体呈一向斜构造(洮河复向斜),向斜核部为晚三叠统大河坝组,向两翼依次为中下三叠统、二叠系、石炭系。三叠系为一套长石砂、泥质板岩复理石建造,局部夹少量砂屑灰岩。二叠系主要岩性组合为长石石英砂岩、微晶灰岩、生物碎屑灰岩、灰质砾岩等;石炭系岩性组合为石英砂岩、长石石英砂岩、碳酸盐岩。
研究区位于礼县–夏河逆冲推覆构造带的西南缘,夏河–合作区域性逆冲推覆断裂将研究区分为南北两个部分,北部属礼县–夏河逆冲推覆构造带,南部为碌曲–成县逆冲推覆构造带。区内地层强烈褶皱,断裂构造十分发育,构造线方向主要为NWW向,与西秦岭地区区域构造方向一致。区内主断裂构造为NWW向的夏河–合作断裂带,该断裂带斜穿研究区中部,向东与宕昌–两当断裂衔接伸入陕西,向西经过同仁伸入青海。其南侧为大致相互平行的桑科南–格里那断裂带,北部为力士山–围当山断裂带。上述断裂带及其旁侧次级断裂构成了本区的基本断裂构造格架。除了NWW向断裂以外,区内还发育NE向和近SN次级断裂,这些断裂常常错断NWW向断裂。
区内岩浆岩十分发育,除夏河、阿姨山、达尔藏、德乌鲁和美武等规模较大的花岗岩类岩基外,还出露大量小岩株和岩脉。岩基主要呈NW向串珠状展布于夏河–合作断裂以北,与区域构造线方向一致,岩性主要为花岗闪长岩、石英闪长岩、石英闪长斑岩及黑云母花岗岩等,岩体中可见大量镁铁质暗色微粒包体。中酸性小岩株和岩脉在区内广泛发育,岩性主要为闪长岩–闪长玢岩、石英闪长岩–石英闪长斑岩以及花岗闪长岩–花岗闪长斑岩等。成岩时代大多为250~210 Ma(黄雄飞,2016;李康宁等,2020)。此外,在德乌鲁和美武岩体之间还分布有大面积的中酸性火山岩,岩性主要为安山岩、英安岩和英安角砾熔岩。火山岩化学成分与侵入岩相当,均属钙碱性系列(刘伯崇等,2018)。
2. 大河坝组基本层序特征
大河坝组位于洮河复向斜核部,分布面积较大,呈西宽东窄楔形向东尖灭,向西与青海隆务河群连通。大河坝组为一套数千米厚的砂板岩互层的复理石建造,表现出浅海陆棚沉积的特征(张新虎,2013),为古特提斯洋沉积体系的重要组成部分(殷鸿福等,1988,1993)。该套地层总体岩性为各种杂砂岩、长石砂岩夹粉砂岩、板岩,或二者互层,偶夹薄层、透镜状灰岩。砂岩成分成熟度低,物源区稳定性较差,具剥蚀强烈、搬运快速的特点。横向上岩性变化不大,出露宽度向东逐渐变窄,向西逐渐变宽。纵向上从下到上,灰岩夹层、泥质板岩逐渐减少,砂岩增多,砂岩粒度变粗,上部常有含砾砂岩出现,总体上呈下细上粗,反映了水体变浅的过程。自下向上岩石颜色有变浅的趋势,从深灰色逐渐变为浅灰色–灰绿色–灰褐色;沉积构造下段以水平层理、沟模、槽模为主,上段以平行层理、波痕、交错层理为主。大河坝组主要由以下3种基本层序组成(图2),其中基本层序A类和基本层序B占绝对优势。
基本层序A(图2、图3a):出现在该组下部,由厚层中细粒杂砂岩、薄层细粒砂岩、板岩组成。砂岩包括钙质砂岩、长石砂岩、石英长石砂岩、长石石英杂砂岩、岩屑石英砂岩,板岩包括泥质板岩、钙质粉砂质板岩、砂质板岩、千枚岩等。砂岩以块状层理为主、见平行层理;砂岩底面平直,板岩占比较大,属复理石建造。
基本层序B(图2、图3b):由具递变层理的杂砂岩、具平行层理的粉砂岩、粉砂质板岩、泥质板岩组成的韵律沉积。砂岩底部多含有撕裂泥质板岩砾石。砂岩、粉砂岩、粉砂质板岩中发育平行层理、斜层理、交错层理、透镜状层理、波状层理及砂球沉积构造(图3c),重荷模、沟模(图3d)构造发育,具浅海陆棚相沉积特征。
基本层序C(图2):主要出现在该组上段,由砾岩、含砾砂岩、杂砂岩、粉砂岩、板岩组成,砂岩、粉砂岩发育大量的交错层理、水平层理、透镜状、脉状层理,波状层理、斜层理、羽状斜理、波痕构造。反映水动力条件较强,快速沉积的特点,具浅海陆棚环境沉积特征。
3. 样品与测试
3.1 主量和微量元素分析
地球化学研究样品采自西秦岭夏河县南部大河坝组(图1),砂岩岩性有长石砂岩、岩屑长石砂岩、含砾长石砂岩(图3a~图3f)等。主微量元素分析由自然资源部兰州矿产资源监督检测中心完成,主量元素在RIX2100型X荧光光谱仪上完成,分析精度>1%。微量元素分析仪器为Agilent 7500a型等离子体质谱仪,分析误差<5%。
3.2 锆石U-Pb年代学分析
锆石制靶、CL照相和U-Pb年龄由南京宏创地质勘查技术服务有限公司完成,Teledyne Cetac Technologies 公司Analyte Excite 193nm激光系统、Nu Instrument公司Nu Plasma II型MC-ICP-MS测试仪器,测试方法为激光剥蚀(LA)–多接收器电感耦合等离子质谱(MC-ICP-MS)。同位素比值校正外部标准值为标准锆石91500,同位素比值和元素含量计算采用软件ICPMSDATACAL11处理,为避免铅丢失,对于>1000 Ma的古老锆石,锆石年龄采用207Pb/206Pb年龄, 206Pb/238U年龄<1000 Ma的锆石,锆石年龄选用206Pb/238U年龄,利用ISOPLOT/Ex_ver3获得谐和年龄和图解。
4. 分析结果
4.1 主量和微量元素
4.1.1 主量元素
大河坝组砂岩中SiO2含量中等,为64.11%~68.27%,平均为65.45%;Al2O3含量为13.61%~15.19%,平均为14.51%;Fe2O3含量为0.82%~1.72%,平均为1.25%;TiO2含量为0.40%~0.56%,平均为0.51%;CaO含量为2.39%~3.32%,平均为3.06%;MgO含量为0.06%~0.10%,平均为0.08%;CaO含量相对较高可能与钙质胶结有关(表1)。
表 1 大河坝组砂岩主量元素(%)、微量元素(10−6)分析结果Table 1. The contents of major elements (%) and trace elements (10−6) the sandstones of the Daheba Formation样品
编号YQ-5 YQ-6 YQ-7 YQ-8 样品
编号YQ-5 YQ-6 YQ-7 YQ-8 岩石
名称岩屑长
石砂岩长石砂岩 岩屑长
石砂岩长石砂岩 岩石名称 岩屑长
石砂岩长石砂岩 岩屑长
石砂岩长石砂岩 SiO2 64.14 68.27 65.28 64.11 V 89.5 82.8 85.6 84.8 TiO2 0.56 0.4 0.52 0.54 La 102.86 41.35 42.78 45.6 Al2O3 14.66 13.61 14.58 15.19 Ce 190.74 78.57 80.42 87.06 Fe2O3 1.35 1.12 0.82 1.72 Pr 20.32 8.71 8.98 9.57 FeO 3.42 2.85 3.19 2.36 Nd 73.09 31.92 32.97 34.91 MnO 0.1 0.06 0.07 0.08 Sm 12.62 6.05 6 6.11 MgO 0.1 0.06 0.07 0.08 Eu 2.35 1.24 1.3 1.27 CaO 3.32 2.39 3.18 3.32 Gd 10.07 4.9 4.91 4.95 Na2O 2.9 3.23 3.01 3.13 Tb 1.41 0.71 0.7 0.68 K2O 2.29 2.15 2.41 2.46 Dy 8.41 4.34 4.23 4.08 P2O5 0.22 0.15 0.15 0.16 Ho 1.62 0.83 0.81 0.78 H2O+ 2.71 2.05 2.57 2.6 Er 4.81 2.47 2.39 2.32 LOI 4.96 4.3 4.68 5.26 Tm 0.66 0.35 0.33 0.31 Total 100.73 100.63 100.55 101 Yb 4.44 2.35 2.2 2.11 Cs 3.76 5.2 7.16 4.81 Lu 0.65 0.34 0.32 0.3 Rb 100 91.4 92.7 81.0 Y 39.44 20.37 20.03 19.73 Ba 519 434 502 466 Fe2O3T 5.15 4.29 4.37 4.35 Th 19.2 17.4 15.5 18.4 Fe2O3/K2O 0.59 0.52 0.34 0.7 U 4.26 2.68 2.32 2.12 Fe2O3T+MgO 5.26 4.35 4.44 4.42 Nb 20.5 13.2 12.4 11.2 Al2O3/SiO2 0.23 0.2 0.22 0.24 Ta 1.56 1.05 1.03 0.84 K2O/Na2O 0.79 0.66 0.8 0.78 Sr 190 222 388 286 Al2O3/(CaO+Na2O) 2.36 2.42 2.35 2.35 Zr 586 334 244 246 ΣREE 434.06 184.13 188.35 200 Hf 11.6 9.2 8.2 7.5 LREE/HREE 12.53 10.3 10.85 11.88 Li 41.8 46.2 40.2 35.2 La/Yb 23.17 17.57 19.44 21.6 Sc 13.2 10.6 10.8 11 (La/Yb)N 2.19 1.66 1.83 2.04 Ga 20 17.4 16.2 15.3 δEu 0.62 0.67 0.71 0.68 Tl 0.45 0.45 0.45 0.4 Sc/Cr 0.2 0.18 0.18 0.19 Co 13 11 11.2 10.4 Th/Sr 0.1 0.08 0.04 0.06 Cr 65.3 58.9 59 58.3 Th/U 4.51 6.49 6.68 8.68 Ni 22.8 21.4 23 20.3 Zr/Hf 50.52 36.3 29.76 32.8 大河坝组砂岩中Al2O3/SiO2值为0.2~0.24,平均为0.22(表1),说明砂岩成熟度相对均一,未经历强烈的搬运改造或蚀变作用(闫臻等,2006)。Al2O3/(CaO+Na2O)变化范围小、比值低(2.35~2.42,平均为2.37),说明砂岩中长石含量较高。Fe2O3/K2O值为0.34~0.7,平均为0.54,变化较大,部分砂岩比值相对较高,可能有富铁矿物的存在(表1)。在SiO2/Al2O3-Na2O/K2O及SiO2/Al2O3-Fe2O3/K2O砂岩分类图解(图4)中,均落入杂砂岩区域,推测大河坝组砂岩可能经历了相对近源或较为快速的成岩过程。
4.1.2 稀土元素、微量元素
大河坝组样品稀土元素总量较高,ΣREE值为184×10−6~434×10−6,平均为252×10−6(表1)。在球粒陨石标准化配分图(图5a)上,曲线呈右倾型,各样品曲线互相平行,说明这些砂岩源区一致。样品具有Eu负异常,δEu值为0.62~0.71,平均为0.67,与上地壳δEu(0.64)相当接近。轻重稀土分异明显,轻稀土较重稀土分馏程度高,LREE/HREE值为10.3~12.53,(La/Yb)N 值为12.61~16.62。轻稀土元素(LREE)富集,重稀土相对亏损。
图 5 稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据Sun et al.,1989)Figure 5. (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace clement spider diagrams在微量元素的原始地幔标准化蛛网图(图5b)中,表现为Nb、Ta、Ti、HREE等高场强元素(HFSE)相对亏损,而Rb、Th、Zr等大离子亲石元素(LILE)则相对富集,具明显的Nb-Ta谷,与岛弧或大陆边缘弧环境类似,均具有一致的配分曲线。Th值为15.5×10−6~19.2×10−6,平均值为17.6×10−6;Zr值为244×10−6~586×10−6,平均值为353×10−6;Co值为10.4×10−6~13×10−6,平均值为11.4×10−6;Ni值为20.3×10−6~23×10−6,平均值为21.9×10−6,Th、Zr、Ti、Co、Ni等不活泼的微量元素值非常接近活动大陆边缘统计值(Bhatia,1983)。
4.2 碎屑锆石U-Pb年代学特征
对大河坝组砂岩中61颗碎屑锆石进行U-Pb定年,得到有效数据59个(表2)。用于测年的碎屑锆石颗粒为无色透明,短柱状、长柱状为主,具明显的振荡环带,部分锆石边部因热液或变质作用出现增生结构(图6)。锆石年龄为253.3~2520 Ma,主要集中在3个阶段(图7)。① 253.3~448.7 Ma(19个),占有效年龄总数31.1%,峰值为278.2 Ma、448.5 Ma。② 1536~2067 Ma(30个),占有效年龄总数49.2%,峰值为1757.6 Ma、1986.4 Ma。③ 2204~2520 Ma(7个),占有效年龄总数11.5%,峰值为2445 Ma。另有,3个锆石年龄为697~1151.2 Ma。大河坝组碎屑锆石年龄主要集中在晚古生代和中元古代—古元古代,锆石年龄最小为253.3 Ma,代表其沉积时间不早于253.3 Ma。
表 2 大河坝组碎屑锆石U-Pb年龄数据Table 2. U-Pb age data of detrital zircons from Daheba Formation测点号 元素含量 Th/U 同位素比值 同位素年龄(Ma) 谐和
度(%)Pb
(10−6)Th
(10−6)U
(10−6)207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 2σ 测值 2σ 测值 2σ 测值 1σ 测值 1σ 测值 1σ TW - 1 14.5 51.5 37.5 1.37 0.1140 0.0027 4.2500 0.1100 0.2692 0.0030 1845.0 43.0 1678.0 22.0 1536.0 15.0 91 TW - 2 164 149 497 0.30 0.1071 0.0009 4.3040 0.0590 0.2900 0.0022 1749.0 16.0 1694.2 11.0 1642.5 11.0 97 TW - 3 2.00 9.50 15.4 0.62 0.0776 0.0080 1.2000 0.1200 0.1143 0.0038 990.0 200.0 792.0 50.0 697.0 22.0 87 TW - 4 34.3 63.4 510 0.12 0.0554 0.0011 0.4960 0.0120 0.0646 0.0007 408.0 44.0 407.8 7.8 403.5 4.2 99 TW - 5 60.1 22.9 150 0.15 0.1226 0.0013 6.1180 0.1000 0.3607 0.0033 1990.0 19.0 1991.0 14.0 1985.0 15.0 100 TW - 6 32.3 45.6 84.7 0.54 0.1137 0.0017 4.9370 0.0930 0.3141 0.0028 1848.0 28.0 1807.0 16.0 1761.0 14.0 97 TW - 7 37.0 106 70.2 1.51 0.1208 0.0017 5.9820 0.1100 0.3577 0.0036 1963.0 25.0 1970.0 16.0 1971.0 17.0 100 TW - 8 3.10 16.2 56.2 0.29 0.0545 0.0037 0.3890 0.0270 0.0516 0.0009 300.0 140.0 328.0 20.0 324.3 5.5 99 TW - 9 1.10 22.4 19.0 1.17 0.0499 0.0067 0.2900 0.0370 0.0442 0.0011 -90.0 230.0 250.0 30.0 278.4 7.0 89 TW - 10 27.1 112 103 1.08 0.0779 0.0017 2.1050 0.0500 0.1956 0.0020 1123.0 43.0 1149.0 16.0 1151.2 11.0 100 TW - 11 74.7 103 199 0.52 0.1117 0.0012 4.8500 0.0820 0.3128 0.0029 1823.0 19.0 1791.0 14.0 1754.0 14.0 98 TW - 12 9.10 228 159 1.43 0.0523 0.0025 0.2890 0.0140 0.0401 0.0005 260.0 100.0 257.0 11.0 253.3 3.2 99 TW - 13 40.7 45.7 96.7 0.47 0.1216 0.0016 5.9110 0.1000 0.3520 0.0036 1973.0 24.0 1961.0 15.0 1944.0 17.0 99 TW - 14 34.0 89.2 83.2 1.07 0.1097 0.0020 4.7020 0.1000 0.3107 0.0037 1786.0 33.0 1765.0 18.0 1744.0 18.0 99 TW - 15 17.5 37.4 42.9 0.87 0.1070 0.0027 4.6700 0.1300 0.3156 0.0037 1718.0 49.0 1752.0 24.0 1769.0 19.0 99 TW - 16 6.90 33.2 11.8 2.81 0.1106 0.0056 4.6900 0.2400 0.3071 0.0062 1720.0 100.0 1742.0 44.0 1724.0 31.0 99 TW - 17 33.9 76.3 775 0.10 0.0530 0.0010 0.3113 0.0069 0.0425 0.0004 312.0 42.0 274.8 5.3 268.6 2.4 98 TW - 18 103 103 226 0.45 0.1254 0.0011 6.5670 0.0950 0.3781 0.0033 2033.0 16.0 2053.6 13.0 2067.0 15.0 99 TW - 19 32.1 48.2 87.5 0.55 0.1026 0.0016 4.3270 0.0820 0.3041 0.0029 1661.0 29.0 1695.0 16.0 1711.0 14.0 99 TW - 21 7.70 12.7 18.8 0.68 0.1144 0.0031 5.2600 0.1600 0.3316 0.0049 1844.0 52.0 1854.0 25.0 1844.0 24.0 99 TW - 22 10.6 14.3 26.6 0.54 0.1104 0.0026 5.0900 0.1300 0.3328 0.0046 1782.0 43.0 1827.0 22.0 1851.0 22.0 99 TW - 23 45.4 68.3 69.1 0.99 0.1633 0.0020 10.8300 0.1900 0.4786 0.0047 2484.0 20.0 2505.0 16.0 2520.0 21.0 99 TW - 24 7.40 33.1 101 0.33 0.0534 0.0024 0.4950 0.0230 0.0668 0.0009 301.0 93.0 406.0 15.0 416.9 5.6 97 TW - 25 71.9 104 230 0.45 0.1041 0.0015 3.8990 0.0790 0.2717 0.0033 1697.0 25.0 1614.0 17.0 1549.0 17.0 96 TW - 26 38.7 146 63.5 2.29 0.1225 0.0020 6.1750 0.1200 0.3647 0.0036 1988.0 30.0 1998.0 17.0 2004.0 17.0 100 TW - 27 17.8 14.5 42.4 0.34 0.1232 0.0025 6.1600 0.1300 0.3625 0.0042 1994.0 36.0 1995.0 19.0 1993.0 20.0 100 TW - 28 31.9 144 56.2 2.56 0.1129 0.0019 5.0170 0.1000 0.3222 0.0031 1834.0 31.0 1820.0 17.0 1800.0 15.0 99 TW - 29 112 141 286 0.49 0.1142 0.0011 5.1740 0.0770 0.3276 0.0029 1862.0 17.0 1848.1 13.0 1827.0 14.0 99 TW - 30 25.2 48.9 50.6 0.97 0.1168 0.0053 5.9000 0.2800 0.3602 0.0056 1907.0 76.0 1953.0 44.0 1983.0 26.0 98 TW - 31 14.1 206 261 0.79 0.0518 0.0017 0.3150 0.0110 0.0441 0.0005 239.0 69.0 276.9 8.3 277.9 2.8 100 TW - 32 30.1 79.8 60.8 1.31 0.1164 0.0019 5.6090 0.1100 0.3489 0.0034 1894.0 29.0 1915.0 17.0 1929.0 16.0 99 TW - 33 10.1 59.1 134 0.44 0.0540 0.0020 0.4770 0.0180 0.0620 0.0007 315.0 78.0 393.0 12.0 388.0 4.4 99 TW - 34 3.7 95.4 53.8 1.77 0.0508 0.0040 0.3080 0.0230 0.0444 0.0008 120.0 150.0 268.0 19.0 279.8 4.8 96 TW - 35 27.7 83.5 62.2 1.34 0.1096 0.0018 4.7190 0.0930 0.3118 0.0033 1780.0 30.0 1767.0 17.0 1749.0 16.0 99 TW - 36 129 117 229 0.51 0.1440 0.0017 8.9100 0.1800 0.4311 0.0059 2273.0 20.0 2327.0 18.0 2310.0 27.0 99 TW - 37 29.4 36.3 82.0 0.44 0.1077 0.0016 4.5660 0.0860 0.3077 0.0031 1753.0 27.0 1740.0 16.0 1729.0 15.0 99 TW - 38 2.30 1.30 6.00 0.21 0.1185 0.0057 5.5500 0.2600 0.3429 0.0073 1871.0 87.0 1891.0 40.0 1897.0 35.0 100 TW - 39 2.70 61.3 48.7 1.26 0.0491 0.0037 0.2770 0.0210 0.0410 0.0007 80.0 150.0 243.0 16.0 259.0 4.2 94 TW - 40 22.2 54.3 48.7 1.12 0.1133 0.0021 5.2550 0.1100 0.3363 0.0034 1838.0 34.0 1857.0 18.0 1868.0 16.0 99 TW - 41 55.3 116 90.7 1.28 0.1482 0.0016 8.7300 0.1400 0.4262 0.0040 2323.0 19.0 2309.0 15.0 2288.0 18.0 99 TW - 42 12.7 61.4 158 0.39 0.0568 0.0017 0.5640 0.0180 0.0721 0.0008 441.0 68.0 452.0 12.0 448.7 4.5 99 TW - 43 5.40 59.1 112 0.53 0.0511 0.0029 0.3010 0.0170 0.0425 0.0007 180.0 110.0 264.0 14.0 268.5 4.2 98 TW - 45 9.10 23.0 59.7 0.38 0.0643 0.0021 1.2000 0.0410 0.1348 0.0015 695.0 70.0 794.0 19.0 815.0 8.5 97 TW - 46 5.90 80.0 108 0.74 0.0528 0.0029 0.3210 0.0180 0.0443 0.0006 230.0 110.0 279.0 14.0 279.3 3.8 100 TW - 47 17.5 35.4 42.5 0.83 0.1127 0.0023 4.9730 0.1100 0.3209 0.0033 1829.0 38.0 1814.0 19.0 1794.0 16.0 99 TW - 48 15.3 251 307 0.82 0.0516 0.0017 0.2853 0.0097 0.0403 0.0005 225.0 70.0 253.8 7.6 254.8 3.0 100 TW - 49 36.1 177 57.5 3.08 0.1129 0.0021 5.1670 0.1100 0.3317 0.0034 1836.0 33.0 1845.0 18.0 1846.0 16.0 100 TW - 50 37.1 94.4 72.5 1.30 0.1232 0.0019 6.1300 0.1200 0.3598 0.0037 1996.0 27.0 1990.0 17.0 1981.0 17.0 100 TW - 51 66.3 90.1 124 0.73 0.1512 0.0016 8.6500 0.1400 0.4143 0.0036 2354.0 18.0 2299.0 15.0 2234.0 16.0 97 TW - 52 1.20 4.70 14.6 0.32 0.0543 0.0058 0.5250 0.0550 0.0711 0.0019 170.0 200.0 412.0 38.0 442.0 12.0 93 TW - 53 48.7 59.9 94.3 0.64 0.1545 0.0025 8.6300 0.1800 0.4079 0.0055 2395.0 27.0 2297.0 19.0 2204.0 25.0 96 TW - 54 6.80 4.80 118 0.04 0.0535 0.0022 0.4170 0.0170 0.0564 0.0007 298.0 89.0 351.0 12.0 353.8 4.0 99 TW - 55 6.40 17.6 14.0 1.26 0.1141 0.0040 5.1800 0.1900 0.3276 0.0050 1826.0 66.0 1838.0 33.0 1825.0 24.0 99 TW - 56 105 51.5 196 0.26 0.1720 0.0023 11.0200 0.2700 0.4649 0.0069 2574.0 22.0 2522.0 23.0 2460.0 30.0 98 TW - 57 92.4 91.2 159 0.57 0.1642 0.0013 10.4700 0.1600 0.4615 0.0039 2497.0 13.0 2475.4 14.0 2446.0 17.0 99 TW - 58 1.80 20.5 31.1 0.66 0.0505 0.0049 0.3400 0.0320 0.0490 0.0012 50.0 180.0 286.0 24.0 308.1 7.5 93 TW - 59 18.7 52.7 254 0.21 0.0551 0.0015 0.5260 0.0150 0.0692 0.0007 379.0 62.0 427.3 10.0 431.5 4.0 99 TW - 60 18.6 31.6 47.4 0.67 0.1080 0.0022 4.7220 0.0990 0.3174 0.0032 1747.0 37.0 1767.0 18.0 1776.0 16.0 99 TW - 61 58.8 687 1021 0.67 0.0530 0.0008 0.3472 0.0071 0.0475 0.0004 317.0 37.0 302.3 5.3 299.1 2.6 99 5. 讨论
5.1 源区构造背景与原岩属性
砂岩的元素组分是岩石矿物组成、化学性质、物质来源的集中反映(何庆斌等,2022;李胡蝶等,2023)。石英、黏土矿物、长石类矿物成的富集程度可以用Al2O3/SiO2来衡量,风化过程中镁、铁质矿物的的变化参数为Fe2O3/K2O,而Na2O/K2O指示其化学成熟度,Al2O3/(CaO+Na2O)指示最稳定元素与最不稳定元素关系。Crook(1974)利用砂岩中这几种主量元素的氧化物含量作为参数,判断源区性质及其构造背景。岩浆岛弧:SiO2<58%,K2O/Na2O<1;安第斯型大陆边缘及大陆地壳上部:68%<SiO2<74%,K2O/Na2O<1;大西洋型被动大陆边缘:SiO2>89%,K2O/Na2O>1。研究区砂岩更接近安第斯型活动大陆边缘和大陆地壳上部。在(K2O+Na2O)-SiO2与Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)砂岩源区构造环境判别图解(图8)中,大河坝组砂岩全部落入活动大陆边缘区域。
图 8 砂岩构造环境(Na2O+K2O)-SiO2(a)和Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)主量元素判别图解(b)(底图a据Roser et al.,1988;底图b据Bhatia,1983)Figure 8. (a) Tectonic discrimination diagrams on(Na2O+K2O)-SiO2 and (b) Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)稀土微量元素在成岩过程、构造活动中变化极小,其含量主要受沉积物源区性质的影响,可利用稀土微量元素约束构造环境(任栩莹等,2023)。在La-Th-Sc构造环境判别图解中,大河坝组落入活动大陆边缘(图9a);在Th-Sc-Zr/构造环境判别图解中,落入大陆岛弧、活动大陆边缘、被动大陆边缘外部交汇(图9b);在Th-Co-Zr构造环境判别图解中,落入大陆岛弧及其附近(图9c)。综合主量元素和微量元素特征判断,大河坝组主要呈现出活动大陆边缘的特征。
图 9 大河坝组微量元素源区构造环境判别图(底图据Bhatia et al.,1986)Figure 9. Structure environment discrimination diagram of trace elements from stones samples of Daheba formation将碎屑沉积物源可划分为长英质火成物源区、中性岩火成物源区、镁铁质火成物源区和石英沉积岩物源区4类(Roser et al.,1988),并提出了主量元素F1-F2(图10a)、F3-F4(图10b)判别函数判别图。在这两个图解中,研究区砂岩均落于中性岩火成岩物源区。由于沉积岩中La、Rb、Ce、Hf、Ti、Sc等稀土微量元素活动性较弱,成岩后具相对稳定,这些元素组合特征对母岩、沉积盆地特征具有较好的反映(Taylor et al.,1981)。K-Rb源区判别图解不仅可以区分长石砂岩和变质杂砂岩,还可以推断原岩为基性还是中酸性。K-Rb判别图解(图10c)显示,大河坝组砂岩全部来自于中酸性岩,并且所有样品均落在长石砂岩与变质杂砂岩交汇的公共区域,这也与实际观察相一致。在La/Th-Hf源岩属性判别图上(图10d),绝大多数样品落入长英质源区向被动边缘过渡区域,有较多的古老沉积物加入。
5.2 年龄谱系与物源分析
(1)华力西期年龄(峰值为278.2 Ma):大河坝组该组锆石年龄数据较多,但西秦岭及邻区该期岩浆年龄报道较少。西秦岭西段江里沟二长花岗岩年龄为269~260 Ma(徐学义等,2014),冷湖地区盐场北山花岗岩年龄为273~265 Ma(董增产等,2015),西秦岭东段中川二长花岗岩年龄为264.4 Ma(徐学义等,2014)。据此认为,该年龄段的锆石主要来自于西秦岭同时期的岩浆岩。
(2)加里东时期年龄(峰值为466 Ma):该阶段年龄占比较小,但周缘板块这一时期年龄分布较广。南秦岭紫阳一带零星出露有基性岩墙群、火山岩(陈虹等,2014;罗金海,2015)。北秦岭发育有500 Ma(陆松年等,2003)、450 Ma(陈隽璐等,2008)、400 Ma(张成立等,2013)等3期岩浆活动。中祁连东段这一时期的岩浆岩有乐都石英闪长岩(446±3 Ma)–黑云母花岗岩(441±4 Ma)–二云母花岗岩(431±4 Ma)、什川二长花岗岩(427±3 Ma)、炳灵寺黑云母花岗岩(432±4 Ma)等(杨贺,2016)。在中南祁连,罗志文等(2015)报道了洼塘地区的花岗岩锆石U-Pb年龄为(416.7±4.3) Ma。考虑二叠纪阿尼玛卿洋的存在,笔者认为大河坝组加里东期锆石主要来自于北秦岭地块和祁连地块。
(3)中元古代—古元古代时期年龄(峰值为1757 Ma、1986 Ma、2445 Ma):大河坝组砂岩年龄主要集中在该阶段,广泛分布于周缘的华北、祁连等板块。2.6~2.4 Ga和2.0~1.7 Ga是华北板块特征年龄峰值(翟明国等,2007;陆松年等,2009)。2.6~2.4 Ga华北板块块体地壳快速增生,有强烈的岩浆活动发生(Zhao et al.,2002;Kusky et al.,2003)。~1.8 Ga时期,华北板块内部东西两大陆块发生碰撞,形成华北板块统一基底(Zhao et al.,2005)。祁连造山带北大河群、托赖岩群、湟源岩群、陇山岩群都存在大量古元古代晚期至中元古代年龄,以及少量新太古代至古元古代年龄(何艳红等,2005;徐旺春等,2007;李怀坤等,2007;何世平等,2007;陆松年等,2009;杨昕,2015;曾俊杰等,2021)。据此认为,大河坝组该年龄段的锆石来自于祁连地块、华北地块古老基地以及下伏沉积地层的再旋回沉积。
综上所述,大河坝组的物源区主要在其北侧,祁连造山带东段、华北板块南缘基底以及北秦岭构造带为其沉积提供了大部分的物质来源,另有部分碎屑可能来自西秦岭同期岩浆岩和多旋回沉积物。
5.3 西秦岭造山带演化
对前人碎屑锆石测年统计发现,西秦岭三叠系碎屑锆石年龄存在2.5~2.0 Ga、500~400 Ma、 300~250 Ma等3个峰值,且以>1600 Ma古老碎屑锆石占主体(闫臻等,2002;Weislogel et al.,2006,2010;陈岳龙等,2008),反映研究区及邻区在三叠纪之前至少发生过3期较大规模的构造–岩浆活动事件。①中元古代—古元古代碎屑锆石则代表了祁连造山带及华北板块南缘的变质基底,反映了Columbia超大陆汇聚期大规模岩浆活动。②早古生代的碎屑锆石年龄时间上与加里东造山运动相当,代表了华北板块、扬子板块俯冲-碰撞运动及其间小规模的岩浆事件。③晚古生代碎屑锆石代表了西秦岭同期岩浆活动,可能与华力西期褶皱基底发生伸展裂陷的地质背景相关,期间发生了较强烈的岩浆活动。
6. 结论
(1)西秦岭大河坝组为一套浅海陆棚相复理石沉积,岩性组合简单,以砂板岩为主。上从下到上,泥质板岩逐渐减少,砂岩增多,砂岩粒度变粗,上部常有含砾砂岩出现,总体上呈下细上粗,反映了水体变浅、快速沉积的过程。
(2)西秦岭中晚三叠世大河坝组SiO2含量中等,低CaO、MgO、Al2O3/SiO2,Al2O3/(CaO+Na2O)值低、变化小,Fe2O3/K2O值高。稀土元素总量较高,轻稀土元素(LREE)富集,重稀土相对亏损。轻重稀土分异明显,轻稀土较重稀土分馏程度高。具有Eu负异常,δEu值平均为0.67,接近上地壳δEu值(0.64)。岩石地球化学表明,砂岩岩石类型主要为通常形成在强烈构造活动背景下快速堆积的杂砂岩,物源区构造背景为活动大陆边缘,沉积物源来自上地壳中酸性火成岩。
(3)碎屑锆石年龄峰值代表了华力西期、加里东期、中元古代—古元古代3期岩浆活动,西秦岭北侧的北秦岭构造带、祁连造山带东段和华北板块南缘基底是其主要沉积物源区,亦有西秦岭同期岩浆岩、早期沉积再旋回沉积物参与。
致谢:中国地质大学(北京)邱昆峰教授、甘肃省地矿局第三地质矿产勘查院刘伯崇正高级工程师以及匿名审稿老师在写作、审稿过程中提出宝贵意见,在此一并感谢。
-
图 4 砂岩SiO2/ Al2O3-Na2O/K2O(a)和Fe2O3/K2O-SiO2/Al2O3(b)分类图解(底图a据Roser et al.,1988;底图b据Herron,1988)
Figure 4. (a) SiO2/Al2O3-Na2O/K2O and (b) Na2O/K2O-SiO2/Al2O3 classification diagrams of sandstones
图 5 稀土元素球粒陨石标准化配分图解(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据据Sun et al.,1989)
Figure 5. (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace clement spider diagrams
图 8 砂岩构造环境(Na2O+K2O)-SiO2(a)和Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)主量元素判别图解(b)(底图a据Roser et al.,1988;底图b据Bhatia,1983)
Figure 8. (a) Tectonic discrimination diagrams on(Na2O+K2O)-SiO2 and (b) Al2O3/(CaO+Na2O)-(Fe2O3T+MgO)
图 9 大河坝组微量元素源区构造环境判别图(底图据Bhatia et al.,1986)
Figure 9. Structure environment discrimination diagram of trace elements from stones samples of Daheba formation
图 10 大河坝组砂岩物源属性判别图解(底图a据Roser et al.,1988;底图b据Pettijohn et al.,1973;底图c、d据Floyd et al.,1987)
Figure 10. Diagram for source attribute discrimination of sandstone in Daheba formation
表 1 大河坝组砂岩主量元素(%)、微量元素(10−6)分析结果
Table 1 The contents of major elements (%) and trace elements (10−6) the sandstones of the Daheba Formation
样品
编号YQ-5 YQ-6 YQ-7 YQ-8 样品
编号YQ-5 YQ-6 YQ-7 YQ-8 岩石
名称岩屑长
石砂岩长石砂岩 岩屑长
石砂岩长石砂岩 岩石名称 岩屑长
石砂岩长石砂岩 岩屑长
石砂岩长石砂岩 SiO2 64.14 68.27 65.28 64.11 V 89.5 82.8 85.6 84.8 TiO2 0.56 0.4 0.52 0.54 La 102.86 41.35 42.78 45.6 Al2O3 14.66 13.61 14.58 15.19 Ce 190.74 78.57 80.42 87.06 Fe2O3 1.35 1.12 0.82 1.72 Pr 20.32 8.71 8.98 9.57 FeO 3.42 2.85 3.19 2.36 Nd 73.09 31.92 32.97 34.91 MnO 0.1 0.06 0.07 0.08 Sm 12.62 6.05 6 6.11 MgO 0.1 0.06 0.07 0.08 Eu 2.35 1.24 1.3 1.27 CaO 3.32 2.39 3.18 3.32 Gd 10.07 4.9 4.91 4.95 Na2O 2.9 3.23 3.01 3.13 Tb 1.41 0.71 0.7 0.68 K2O 2.29 2.15 2.41 2.46 Dy 8.41 4.34 4.23 4.08 P2O5 0.22 0.15 0.15 0.16 Ho 1.62 0.83 0.81 0.78 H2O+ 2.71 2.05 2.57 2.6 Er 4.81 2.47 2.39 2.32 LOI 4.96 4.3 4.68 5.26 Tm 0.66 0.35 0.33 0.31 Total 100.73 100.63 100.55 101 Yb 4.44 2.35 2.2 2.11 Cs 3.76 5.2 7.16 4.81 Lu 0.65 0.34 0.32 0.3 Rb 100 91.4 92.7 81.0 Y 39.44 20.37 20.03 19.73 Ba 519 434 502 466 Fe2O3T 5.15 4.29 4.37 4.35 Th 19.2 17.4 15.5 18.4 Fe2O3/K2O 0.59 0.52 0.34 0.7 U 4.26 2.68 2.32 2.12 Fe2O3T+MgO 5.26 4.35 4.44 4.42 Nb 20.5 13.2 12.4 11.2 Al2O3/SiO2 0.23 0.2 0.22 0.24 Ta 1.56 1.05 1.03 0.84 K2O/Na2O 0.79 0.66 0.8 0.78 Sr 190 222 388 286 Al2O3/(CaO+Na2O) 2.36 2.42 2.35 2.35 Zr 586 334 244 246 ΣREE 434.06 184.13 188.35 200 Hf 11.6 9.2 8.2 7.5 LREE/HREE 12.53 10.3 10.85 11.88 Li 41.8 46.2 40.2 35.2 La/Yb 23.17 17.57 19.44 21.6 Sc 13.2 10.6 10.8 11 (La/Yb)N 2.19 1.66 1.83 2.04 Ga 20 17.4 16.2 15.3 δEu 0.62 0.67 0.71 0.68 Tl 0.45 0.45 0.45 0.4 Sc/Cr 0.2 0.18 0.18 0.19 Co 13 11 11.2 10.4 Th/Sr 0.1 0.08 0.04 0.06 Cr 65.3 58.9 59 58.3 Th/U 4.51 6.49 6.68 8.68 Ni 22.8 21.4 23 20.3 Zr/Hf 50.52 36.3 29.76 32.8 表 2 大河坝组碎屑锆石U-Pb年龄数据
Table 2 U-Pb age data of detrital zircons from Daheba Formation
测点号 元素含量 Th/U 同位素比值 同位素年龄(Ma) 谐和
度(%)Pb
(10−6)Th
(10−6)U
(10−6)207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 测值 2σ 测值 2σ 测值 2σ 测值 1σ 测值 1σ 测值 1σ TW - 1 14.5 51.5 37.5 1.37 0.1140 0.0027 4.2500 0.1100 0.2692 0.0030 1845.0 43.0 1678.0 22.0 1536.0 15.0 91 TW - 2 164 149 497 0.30 0.1071 0.0009 4.3040 0.0590 0.2900 0.0022 1749.0 16.0 1694.2 11.0 1642.5 11.0 97 TW - 3 2.00 9.50 15.4 0.62 0.0776 0.0080 1.2000 0.1200 0.1143 0.0038 990.0 200.0 792.0 50.0 697.0 22.0 87 TW - 4 34.3 63.4 510 0.12 0.0554 0.0011 0.4960 0.0120 0.0646 0.0007 408.0 44.0 407.8 7.8 403.5 4.2 99 TW - 5 60.1 22.9 150 0.15 0.1226 0.0013 6.1180 0.1000 0.3607 0.0033 1990.0 19.0 1991.0 14.0 1985.0 15.0 100 TW - 6 32.3 45.6 84.7 0.54 0.1137 0.0017 4.9370 0.0930 0.3141 0.0028 1848.0 28.0 1807.0 16.0 1761.0 14.0 97 TW - 7 37.0 106 70.2 1.51 0.1208 0.0017 5.9820 0.1100 0.3577 0.0036 1963.0 25.0 1970.0 16.0 1971.0 17.0 100 TW - 8 3.10 16.2 56.2 0.29 0.0545 0.0037 0.3890 0.0270 0.0516 0.0009 300.0 140.0 328.0 20.0 324.3 5.5 99 TW - 9 1.10 22.4 19.0 1.17 0.0499 0.0067 0.2900 0.0370 0.0442 0.0011 -90.0 230.0 250.0 30.0 278.4 7.0 89 TW - 10 27.1 112 103 1.08 0.0779 0.0017 2.1050 0.0500 0.1956 0.0020 1123.0 43.0 1149.0 16.0 1151.2 11.0 100 TW - 11 74.7 103 199 0.52 0.1117 0.0012 4.8500 0.0820 0.3128 0.0029 1823.0 19.0 1791.0 14.0 1754.0 14.0 98 TW - 12 9.10 228 159 1.43 0.0523 0.0025 0.2890 0.0140 0.0401 0.0005 260.0 100.0 257.0 11.0 253.3 3.2 99 TW - 13 40.7 45.7 96.7 0.47 0.1216 0.0016 5.9110 0.1000 0.3520 0.0036 1973.0 24.0 1961.0 15.0 1944.0 17.0 99 TW - 14 34.0 89.2 83.2 1.07 0.1097 0.0020 4.7020 0.1000 0.3107 0.0037 1786.0 33.0 1765.0 18.0 1744.0 18.0 99 TW - 15 17.5 37.4 42.9 0.87 0.1070 0.0027 4.6700 0.1300 0.3156 0.0037 1718.0 49.0 1752.0 24.0 1769.0 19.0 99 TW - 16 6.90 33.2 11.8 2.81 0.1106 0.0056 4.6900 0.2400 0.3071 0.0062 1720.0 100.0 1742.0 44.0 1724.0 31.0 99 TW - 17 33.9 76.3 775 0.10 0.0530 0.0010 0.3113 0.0069 0.0425 0.0004 312.0 42.0 274.8 5.3 268.6 2.4 98 TW - 18 103 103 226 0.45 0.1254 0.0011 6.5670 0.0950 0.3781 0.0033 2033.0 16.0 2053.6 13.0 2067.0 15.0 99 TW - 19 32.1 48.2 87.5 0.55 0.1026 0.0016 4.3270 0.0820 0.3041 0.0029 1661.0 29.0 1695.0 16.0 1711.0 14.0 99 TW - 21 7.70 12.7 18.8 0.68 0.1144 0.0031 5.2600 0.1600 0.3316 0.0049 1844.0 52.0 1854.0 25.0 1844.0 24.0 99 TW - 22 10.6 14.3 26.6 0.54 0.1104 0.0026 5.0900 0.1300 0.3328 0.0046 1782.0 43.0 1827.0 22.0 1851.0 22.0 99 TW - 23 45.4 68.3 69.1 0.99 0.1633 0.0020 10.8300 0.1900 0.4786 0.0047 2484.0 20.0 2505.0 16.0 2520.0 21.0 99 TW - 24 7.40 33.1 101 0.33 0.0534 0.0024 0.4950 0.0230 0.0668 0.0009 301.0 93.0 406.0 15.0 416.9 5.6 97 TW - 25 71.9 104 230 0.45 0.1041 0.0015 3.8990 0.0790 0.2717 0.0033 1697.0 25.0 1614.0 17.0 1549.0 17.0 96 TW - 26 38.7 146 63.5 2.29 0.1225 0.0020 6.1750 0.1200 0.3647 0.0036 1988.0 30.0 1998.0 17.0 2004.0 17.0 100 TW - 27 17.8 14.5 42.4 0.34 0.1232 0.0025 6.1600 0.1300 0.3625 0.0042 1994.0 36.0 1995.0 19.0 1993.0 20.0 100 TW - 28 31.9 144 56.2 2.56 0.1129 0.0019 5.0170 0.1000 0.3222 0.0031 1834.0 31.0 1820.0 17.0 1800.0 15.0 99 TW - 29 112 141 286 0.49 0.1142 0.0011 5.1740 0.0770 0.3276 0.0029 1862.0 17.0 1848.1 13.0 1827.0 14.0 99 TW - 30 25.2 48.9 50.6 0.97 0.1168 0.0053 5.9000 0.2800 0.3602 0.0056 1907.0 76.0 1953.0 44.0 1983.0 26.0 98 TW - 31 14.1 206 261 0.79 0.0518 0.0017 0.3150 0.0110 0.0441 0.0005 239.0 69.0 276.9 8.3 277.9 2.8 100 TW - 32 30.1 79.8 60.8 1.31 0.1164 0.0019 5.6090 0.1100 0.3489 0.0034 1894.0 29.0 1915.0 17.0 1929.0 16.0 99 TW - 33 10.1 59.1 134 0.44 0.0540 0.0020 0.4770 0.0180 0.0620 0.0007 315.0 78.0 393.0 12.0 388.0 4.4 99 TW - 34 3.7 95.4 53.8 1.77 0.0508 0.0040 0.3080 0.0230 0.0444 0.0008 120.0 150.0 268.0 19.0 279.8 4.8 96 TW - 35 27.7 83.5 62.2 1.34 0.1096 0.0018 4.7190 0.0930 0.3118 0.0033 1780.0 30.0 1767.0 17.0 1749.0 16.0 99 TW - 36 129 117 229 0.51 0.1440 0.0017 8.9100 0.1800 0.4311 0.0059 2273.0 20.0 2327.0 18.0 2310.0 27.0 99 TW - 37 29.4 36.3 82.0 0.44 0.1077 0.0016 4.5660 0.0860 0.3077 0.0031 1753.0 27.0 1740.0 16.0 1729.0 15.0 99 TW - 38 2.30 1.30 6.00 0.21 0.1185 0.0057 5.5500 0.2600 0.3429 0.0073 1871.0 87.0 1891.0 40.0 1897.0 35.0 100 TW - 39 2.70 61.3 48.7 1.26 0.0491 0.0037 0.2770 0.0210 0.0410 0.0007 80.0 150.0 243.0 16.0 259.0 4.2 94 TW - 40 22.2 54.3 48.7 1.12 0.1133 0.0021 5.2550 0.1100 0.3363 0.0034 1838.0 34.0 1857.0 18.0 1868.0 16.0 99 TW - 41 55.3 116 90.7 1.28 0.1482 0.0016 8.7300 0.1400 0.4262 0.0040 2323.0 19.0 2309.0 15.0 2288.0 18.0 99 TW - 42 12.7 61.4 158 0.39 0.0568 0.0017 0.5640 0.0180 0.0721 0.0008 441.0 68.0 452.0 12.0 448.7 4.5 99 TW - 43 5.40 59.1 112 0.53 0.0511 0.0029 0.3010 0.0170 0.0425 0.0007 180.0 110.0 264.0 14.0 268.5 4.2 98 TW - 45 9.10 23.0 59.7 0.38 0.0643 0.0021 1.2000 0.0410 0.1348 0.0015 695.0 70.0 794.0 19.0 815.0 8.5 97 TW - 46 5.90 80.0 108 0.74 0.0528 0.0029 0.3210 0.0180 0.0443 0.0006 230.0 110.0 279.0 14.0 279.3 3.8 100 TW - 47 17.5 35.4 42.5 0.83 0.1127 0.0023 4.9730 0.1100 0.3209 0.0033 1829.0 38.0 1814.0 19.0 1794.0 16.0 99 TW - 48 15.3 251 307 0.82 0.0516 0.0017 0.2853 0.0097 0.0403 0.0005 225.0 70.0 253.8 7.6 254.8 3.0 100 TW - 49 36.1 177 57.5 3.08 0.1129 0.0021 5.1670 0.1100 0.3317 0.0034 1836.0 33.0 1845.0 18.0 1846.0 16.0 100 TW - 50 37.1 94.4 72.5 1.30 0.1232 0.0019 6.1300 0.1200 0.3598 0.0037 1996.0 27.0 1990.0 17.0 1981.0 17.0 100 TW - 51 66.3 90.1 124 0.73 0.1512 0.0016 8.6500 0.1400 0.4143 0.0036 2354.0 18.0 2299.0 15.0 2234.0 16.0 97 TW - 52 1.20 4.70 14.6 0.32 0.0543 0.0058 0.5250 0.0550 0.0711 0.0019 170.0 200.0 412.0 38.0 442.0 12.0 93 TW - 53 48.7 59.9 94.3 0.64 0.1545 0.0025 8.6300 0.1800 0.4079 0.0055 2395.0 27.0 2297.0 19.0 2204.0 25.0 96 TW - 54 6.80 4.80 118 0.04 0.0535 0.0022 0.4170 0.0170 0.0564 0.0007 298.0 89.0 351.0 12.0 353.8 4.0 99 TW - 55 6.40 17.6 14.0 1.26 0.1141 0.0040 5.1800 0.1900 0.3276 0.0050 1826.0 66.0 1838.0 33.0 1825.0 24.0 99 TW - 56 105 51.5 196 0.26 0.1720 0.0023 11.0200 0.2700 0.4649 0.0069 2574.0 22.0 2522.0 23.0 2460.0 30.0 98 TW - 57 92.4 91.2 159 0.57 0.1642 0.0013 10.4700 0.1600 0.4615 0.0039 2497.0 13.0 2475.4 14.0 2446.0 17.0 99 TW - 58 1.80 20.5 31.1 0.66 0.0505 0.0049 0.3400 0.0320 0.0490 0.0012 50.0 180.0 286.0 24.0 308.1 7.5 93 TW - 59 18.7 52.7 254 0.21 0.0551 0.0015 0.5260 0.0150 0.0692 0.0007 379.0 62.0 427.3 10.0 431.5 4.0 99 TW - 60 18.6 31.6 47.4 0.67 0.1080 0.0022 4.7220 0.0990 0.3174 0.0032 1747.0 37.0 1767.0 18.0 1776.0 16.0 99 TW - 61 58.8 687 1021 0.67 0.0530 0.0008 0.3472 0.0071 0.0475 0.0004 317.0 37.0 302.3 5.3 299.1 2.6 99 -
陈岳龙, 李大鹏, 周建, 等. 中国西秦岭碎屑锆石U-Pb年龄及其构造意义[J]. 地学前缘, 2008, 15(4): 88−107. CHEN Yuelong, LI Dapeng, ZHOU Jian, et al. Zircon U-Pb age and its tectonic significance of western Qinling, China[J]. Earth Science Frontiers,2008,15(4):88−107.
陈隽璐, 徐学义, 王洪亮, 等. 北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J]. 现代地质, 2008, 22(1): 45−52. CHEN Juanlu, XU Xueyi, WANG Hongliang, et al. The formation age of tangzang quartz diorite in the western part of North Qinling and its geological significance[J]. Geoscience,2008,22(1):45−52.
陈虹, 田蜜, 武国利, 等. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据[J]. 地质论评, 2014, 60(6): 1437−1452. CHEN Hong, TIAN Mi, WU Guoli, et al. The Early Paleozoic alkaline magmatism in the South Qinling tectonic belt: evidence of the splitting of the Paleo-Tethys Ocean[J]. Geological Review,2014,60(6):1437−1452.
董增产, 杨成, 辜平阳, 等. 青海冷湖盐场北山黑云母二长花岗岩年代学、地球化学及其地质意义[J]. 大地构造与成矿学, 2015, 39(1): 167−178. DONG Zengchan, YANG Cheng, GU Pingyang, et al. Geochronology, geochemistry and geological significance of biotite monzogranite in Beishan, Lenghu salt field, Qinghai Province[J]. Geotectonica et Metallogenia,2015,39(1):167−178.
冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(1): 1−10. FENG Yimin, CAO Xuanduo, ZHANG Erpeng, et al. Evolution, tectonic pattern and properties of the orogenic belt of West Qinling[J]. Northwestern Geology,2003,36(1):1−10.
何庆斌, 张继红. 松辽盆地南部大安地区姚一段特低渗砂岩成岩作用与成岩相[J]. 成都理工大学学报(自然科学版), 2022, 49(6): 674−686. HE Qingbin, ZHANG Jihong. Diagenesis and diagenetic facies of ultra-low permeability sandstones in the Da'an area of the southern Songliao Basin[J]. Journal of Chengdu University of Technology (Natural Science Edition),2022,49(6):674−686.
何世平, 李荣社, 王超, 等. 南祁连东段化隆岩群形成时代的进一步限定[J]. 岩石矿物学杂志, 2007, 30(1): 34−44. HE Shiping, LI Rongshe, WANG Chao, et al. Further determination of the formation age of Hualong Group in the eastern part of South Qilian[J]. Acta Petrologica et Mineralogica,2007,30(1):34−44.
何艳红, 孙勇, 陈亮, 等. 陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 岩石学报, 2005, 21(1): 125−134. HE Yanhong, SUN Yong, HEN Liang, et al. LA-ICP-MS zircon U-Pb age of Longshan complex and its geological significance[J]. Acta Petrologica Sinica,2005,21(1):125−134.
黄雄飞. 西秦岭印支期花岗质岩浆作用与造山带演化[D]. 北京: 中国地质大学(北京), 2016. HUANG Xiongfei. Indosinian granitic magmatism and orogenic belt evolution in the West Qinling Mountains [D]. Beijing: China University of Geosciences (Beijing), 2016.
姜寒冰, 杨合群, 赵国斌, 等. 西秦岭成矿带区域成矿规律概论[J]. 西北地质, 2023, 56(2): 187−202. JIANG Hanbing, YANG Hequn, ZHAO Guobin, et al. Discussion on the Metallogenic Regularity in West Qinling Metallogenic Belt, China[J]. Northwestern Geology,2023,56(2):187−202.
李胡蝶, 王昌勇, 李楠, 等. 四川盆地东部中-下侏罗统沉积体系及其演化特征[J]. 成都理工大学学报(自然科学版), 2023, 50(3): 279−293. LI Hudie, WANG Changyong, LI Nan, et al. Sedimentary System and Evolutionary Characteristics of the Middle-Lower Jurassic in the Eastern Sichuan Basin[J]. Journal of Chengdu University of Technology (Natural Science Edition),2023,50(3):279−293.
李怀坤, 陆松年, 相振群, 等. 北祁连山西段北大河岩群碎屑锆石SHRIMP U-Pb年代学研究[J]. 地质论评, 2007, 53(1): 132−140. doi: 10.3321/j.issn:0371-5736.2007.01.018 LI Huaikun, LU Songnian, XIANG Zhenqun, et al. SHRIMP U-Pb chronological study of clastic zircon from the Beidahe Group in the western section of the North Qilian Mountains[J]. Geological Review,2007,53(1):132−140. doi: 10.3321/j.issn:0371-5736.2007.01.018
李康宁, 贾儒雅, 李鸿睿, 等. 西秦岭甘肃夏河-合作地区与中酸性侵入岩有关的金铜多金属成矿系统及找矿预测[J]. 地质通报, 2020, 50(8): 1191−1203. LI Kangning, JIA Ruya, LI Hongrui, et al. Gold copper polymetallic metallogenic system and prospecting prediction related to intermediate acid intrusive rocks in Xiahe-Hezuo area, Gansu Province, West Qinling[J]. Geologcal Bulletin of China,2020,50(8):1191−1203.
李康宁, 李鸿睿, 贾儒雅, 等. 甘肃早子沟金矿“三位一体”找矿预测地质模型的构建[J]. 矿产勘查, 2019, 10(6): 1397−1408. LI Kangning, LI Hongrui, JIA Ruya, et al. Construction of “Trinity” prospecting prediction geological model of Zaozigou gold deposit in Gansu[J]. Mineral Exploration,2019,10(6):1397−1408.
李智斌, 刘泽宇, 李瑞. 甘肃塔-尕地区大河坝组地球化学特征及成矿远景分析[J]. 地质找矿论丛, 2021, 36(2): 187−194. LI Zhibin, LIU Zeyu, LI Rui. Geochemical characteristics and prospect analysis of mineralization of large river dam formation in Ta-Ga area of Gansu Province[J]. Contributions to Geology and Mineral Resources Research,2021,36(2):187−194.
李平, 陈隽璐, 张越, 等. 商丹俯冲增生带南缘土地沟–池沟地区侵入岩形成时代及地质意义[J]. 西北地质, 2023, 56(2): 10−27. LI Ping, CHEN Junlu, ZHANG Yue, et al. The Formation Age of Intrusions from Tudigou–Chigou Region in Southern Margin of Shangdan Subduction–Accretion Belt and Its Geological Significance[J]. Northwestern Geology,2023,56(2):10−27.
刘伯崇, 李康宁, 史海龙, 等. 西秦岭甘青交界一带晚三叠世火山岩岩石成因及构造指示意义[J]. 现代地质, 2018, 32(4): 704−717. LIU Bochong, LI Kangning, SHI Hailong, et al. Petrogenesis and tectonic indication of Late Triassic volcanic rocks at the junction of Gansu and Qinghai in the western Qinling[J]. Geoscience,2018,32(4):704−717.
陆松年, 李怀坤, 陈志宏. 秦岭造山带中~新元古代地质演化及对Rodinia 超级大陆事件的响应[M]. 北京: 地质出版社, 2003: 1−194. LU Songnian, LI Huaikun, CHEN Zhihong. Meso Neoproterozoic geological evolution of the Qinling orogenic belt and its response to the Rodinia supercontinent event[M]. Beijing: Geological Publishing Press, 2003: 1−194.
陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J]. 岩石学报, 2009, 25(9): 2195−2207. LU Songnian, LI Huaikun, WANG Huichu, et al. Detrital zircon age spectrum of Proterozoic parametamorphic rocks in the Qin Qi Kun orogenic belt[J]. Acta Petrologica Sinica,2009,25(9):2195−2207.
罗金海, 周亚军, 徐欢, 等. 南秦岭旬阳盆地东部晚泥盆世岩浆成因钠长岩及其构造意义[J]. 地质学报, 2015, 91(2): 304−312. LUO Jinhai, ZHOU Yajun, XU Huan, et al. Late Devonian magmatic albite and its tectonic significance in the eastern part of Xunyang Basin, South Qinling[J]. Acta Geologica Sinica,2015,91(2):304−312.
罗志文, 张志诚, 李建锋, 等. 中南祁连西缘肃北三个洼塘地区古生代两类花岗质侵入岩年代学及其地质意义[J]. 岩石学报, 2015, 31(1): 176−188. LUO Zhiwen, ZHANG Zhicheng, LI Jianfeng, et al. Chronology and geological significance of two types of Paleozoic granitic intrusive rocks in the three wa tang areas in the north of the western margin of the central and southern Qilian Mountains[J]. Acta Petrologica Sinica,2015,31(1):176−188.
潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 86−97. PAN Guitang, CHEN Zhiliang, LI Xingzhen, et al. Formation and evolution of geological structure in East Tethys [M]. Beijing: Geological Publishing House, 1997: 86−97.
任栩莹, 李凤杰, 张鹏飞. 柴西北缘鄂博梁地区下干柴沟组泥岩地球化学特征及古环境[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 172−186. REN Xuying, LI Fengjie, ZHANG Pengfei. Geochemical characteristics and paleoenvironment of mudstone in the Lower Ganchaigou Formation of the Eboliang area on the northwest edge of Chai River[J]. Journal of Chengdu University of Technology (Natural Science Edition),2023,50(2):172−186.
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo-REE矿床方解石地球化学特征和氟碳铈矿U-Th-Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical characteristics of calcite and U-Th-Pb age of fluorocarbon cerium deposits in the Huangshui'an carbonate rock type Mo-REE deposit of the Eastern Qinling Mountains[J]. Northwestern Geology,2023,56(1):48−62.
王宗起, 刘平, 谢春林, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527−1546. WANG Zongqi, LIU Ping, XIE Chunlin, et al. New division of major tectonic units in the Qinling orogenic belt[J]. Acta Geologica Sinica,2009,83(11):1527−1546.
徐旺春, 张宏飞, 柳小明. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J]. 科学通报, 2007, 52(10): 1174−1180. doi: 10.3321/j.issn:0023-074X.2007.10.014 XU Wangchun, ZHANG Hongfei, LIU Xiaoming. Zircon U-Pb dating limits the formation age and tectonic significance of high-grade metamorphic rock series in the Qilian Mountains[J]. Science Bulletin,2007,52(10):1174−1180. doi: 10.3321/j.issn:0023-074X.2007.10.014
徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(2): 371−389. XU Xueyi, CHEN Junlu, GAO Ting, et al. Granitic magmatism and tectonic evolution in the northern margin of the West Qinling[J]. Acta Petrologica Sinica,2014,30(2):371−389.
许志琴, 杨经绥, 李海兵, 等. 青藏高原与大陆动力学-地体拼合、碰撞造山及青藏高原隆升的深部驱动力[J]. 中国地质, 2006, 33(2): 221−238. XU Zhiqin, YANG Jingsui, LI Haibing, et al. Tibetan Plateau and continental dynamics - the deep driving force of terrane amalgamation, collision orogeny and uplift of the Tibetan Plateau[J]. Geology in China,2006,33(2):221−238.
闫臻, 方爱民, 潘裕生, 等. 西藏达金海相碎屑岩的组成、地球化学特征及其构造背景[J]. 岩石学报, 2006, 22(4): 949−960. doi: 10.3321/j.issn:1000-0569.2006.04.018 YAN Zhen, FANG Aimin, PAN Yusheng, et al. Composition, geochemical characteristics and tectonic setting of Dajin marine clastic rocks in Tibet[J]. Acta Petrologica Sinica,2006,22(4):949−960. doi: 10.3321/j.issn:1000-0569.2006.04.018
闫臻. 西秦岭晚古生代弧前盆地沉积与成矿作用[D]. 北京: 中国科学院研究生院地质与地球物理研究所, 2002. YAN Zhen. Sedimentation and mineralization of the late Paleozoic fore arc basin in the West Qinling[D]. Beijing: Institute of Geology and Geophysics, Graduate School, Chinese Academy of Sciences, 2002.
杨贺. 中祁连东段早古生代岩浆侵入作用及其深部过程[D]. 武汉: 中国地质大学, 2016. YANG He. Early Paleozoic magmatic intrusion and its deep process in the eastern part of the middle Qilian[D]. Wuhan: China University of Geosciences, 2016.
杨昕. 中祁连西段托赖(岩)群的解体及其地质意义[D]. 北京: 中国地质大学(北京), 2015. YANG Xin. Disintegration of the Tolai group in the western part of the middle Qilian Mountains and its geological significance[D]. Beijing: China University of Geosciences (Beijing), 2015.
殷鸿福, 杨逢清, 黄其胜, 等. 秦岭及邻区的三叠系[M]. 武汉: 中国地质大学出版社, 1993. YIN Hongfu,YANG Fengqing,HUANG Qisheng,et al. Triassic in Qinling and its adjacent areas[M]. Wuhan: China University of Geosciences Press, 1993.
殷鸿福, 杨逢清, 赖旭龙, 等. 秦岭三叠系的分带及印支期发展史[J]. 现代地质, 1988, 2(3): 189−203. YIN Hongfu, YANG Fengqing, LAI Xulong, et al. Zoning of the Triassic in the Qinling Mountains and the history of Indosinian development[J]. Geoscience,1988,2(3):189−203.
曾俊杰, 李康宁, 严康, 等. 西秦岭下三叠统江里沟组构造环境和物源特征-来自碎屑岩地球化学、锆石U-Pb年代学的约束[J]. 地质论评, 2021, 67(1): 69−83. ZENG Junjie, LI Kangning, YAN Kang, et al. Tectonic environment and provenance characteristics of the Lower Triassic Jiangligou Formation in the West Qinling Mountains-constraints from clastic rock geochemistry and zircon U-Pb chronology[J]. Geological Review,2021,67(1):69−83.
翟明国, 彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报, 2007, 23(11): 2665−2682. ZHAI Mingguo, PENG Peng. Paleoproterozoic tectonic event in the North China Craton[J]. Acta Petrologica Sinica,2007,23(11):2665−2682.
张成立, 刘良, 王涛, 等. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 2013, 58(23): 2323−2329. ZHANG Chengli, LIU Liang, WANG Tao, et al. Granite magma in the early Paleozoic continental collision in the North Qinling Mountains[J]. Science Bulletin,2013,58(23):2323−2329.
张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 2004, 11(3): 23−32. ZHANG Guowei, GUO Anlin, YAO Anping. The West Qinling - Songpan Continental Tectonic Knot in Chinese Mainland Tectonics[J]. Earth Science Frontiers,2004,11(3):23−32.
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995, 11(2): 101−113. ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng. Structural properties and Geotectonic Significance of main structural lithostratigraphic units in Qinling orogenic belt[J]. Acta Petrologica Sinica,1995,11(2):101−113.
张新虎. 甘肃省区域成矿与找矿[M]. 北京: 地质出版社, 2013. ZHANG Xinhu. Regional mineralization and prospecting in Gansu Province [M]. Beijing: Geological Publishing House, 2013.
Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology,1983,91:611−627. doi: 10.1086/628815
Bhatia M R, Crook K A W. Trace element characteristics of graywacke and tectonic setting discrimination of sedimentary basins, Contrib[J]. Mineralogy and Petrology,1986,92:181−193.
Crook, K A W. Lithogenesis and Geotectonic: The Significance of Compositional Variations in Flysch Arenites (Graywackes)[J]. SEPM (Society for Sedimentary Geology Special Publication),1974,19:304−310.
Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society,1987,144(4):531−542. doi: 10.1144/gsjgs.144.4.0531
Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Petrology,1988,58(5):820−829.
Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences,2003,22(3):383−397.
Pettijohn F J, Potter P E, Siever R. Sand and Sandstone[M]. New York: Springer Verlag, 1973: 1−618.
Roser B P, Korsch R J. Provenance signature of sandstone mudstone suites determined using discriminant function analysis of major~element data[J]. Chemical Geology,1988,67:119−139. doi: 10.1016/0009-2541(88)90010-1
Sun S S, Mcdonough W F. Chemical and isotope systematic of oceanic basalts: implications for mantle composition and processes[A]. In: Saunders A D and Norry M J. Magmatism in the Ocean Basins[C]. Geological Society Special Publication,1989,42:313−345. doi: 10.1144/GSL.SP.1989.042.01.19
Taylor S R, Mclennan S M. The composition and evolution o1 continental crust, rare earth element evidence from sedimentary rocks[J]. Ureat Britain,1981,301:81−399.
Weislogel A L, Graham S A, Chang E Z. Detrital-zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks[J]. Geology,2006,34:97−100.
Weislogel A L, Graham S A, Chang E Z, et al. Tectonics, erosional exhumation, and sediment production Upper Triassic Songpan~Ganzi complex, central China: Record of collisional detrital zircon provenance from three turbidite depocenters[J]. Geological Society of America Bulletin,2010,122:2041−2062. doi: 10.1130/B26606.1
Zhang Kexin. Application of radiolarians and other fossils in non-Smithstrata: Exemplified by the Animaqing mélange belt in eastern Kunlun Mountains[J]. Science in China (Series D),2000,43(4):364−374. doi: 10.1007/BF02959447
Zhao Guochun, SUN Min, Wilde Simon A, Li Sanzhong. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research,2005,136(2):177−202. doi: 10.1016/j.precamres.2004.10.002
Zhao Guochun, Wilde Simon A., Cawood Peter A. Min Sun SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton[J]. American Journal of Science,2002,302:191−226.
-
期刊类型引用(1)
1. 田智博,苟龙龙,徐晓飞,刘学锋,毛振宇. 秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究. 西北地质. 2025(01): 1-26 . 本站查看
其他类型引用(0)