ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

基于3种不同机器学习算法的滑坡易发性评价对比研究

王本栋, 李四全, 许万忠, 杨勇, 李永云

王本栋,李四全,许万忠,等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
引用本文: 王本栋,李四全,许万忠,等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
WANG Bendong,LI Siquan,XU Wanzhong,et al. A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms[J]. Northwestern Geology,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033
Citation: WANG Bendong,LI Siquan,XU Wanzhong,et al. A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms[J]. Northwestern Geology,2024,57(1):34−43. doi: 10.12401/j.nwg.2023033

基于3种不同机器学习算法的滑坡易发性评价对比研究

详细信息
    作者简介:

    王本栋(1995–),男,硕士研究生,主要从事地质灾害成因分析和治理的研究。E–mail:940001225@qq.com

    通讯作者:

    李四全(1971–),男,正高级工程师,主要从事工程地质与水文地质研究。E–mail:907215864@qq.com

  • 中图分类号: P694

A Comparative Study of Landslide Susceptibility Evaluation Based on Three Different Machine Learning Algorithms

  • 摘要:

    准确的滑坡易发性评价结果是山区滑坡灾害防治的关键,可有效规避潜在滑坡带来的风险。为获得准确、可靠的滑坡预防参考,笔者以云南芒市为研究对象,选取高程、地层岩性、年均降雨量等9项评价因子,通过多重共线性分析,构建研究区滑坡易发性评价指标体系。分别基于支持向量机(SVM)、BP神经网络和随机森林(RF)3种典型机器学习算法进行滑坡易发性评价。利用准确性(ACC)、ROC曲线下面积(AUC)、滑坡比(Sei)及野外实地考察对模型评价结果精度进行对比验证分析。结果显示RF模型的ACC、AUC和极高易发区的SeV值最高,分别为0.867、0.94、9.21;BP神经网络模型次之,其SeV值分别为0.829、0.90、9.14;SVM最低,其SeV值分别为0.794、0.88、6.85。此外,RF算法所得结果还与实地考察情况保持了较高的一致性。实验结果表明与其他两种算法相比,RF算法在芒市区域具有更高的准确性和可靠性,更适合用于该区域的滑坡易发性建模,且利用该模型获得的评价结果,能够为芒市区域的滑坡防治提供理论依据和科学参考。

    Abstract:

    Accurate landslide susceptibility evaluation results are the key to landslide disaster prevention and control in mountainous areas, which can effectively avoid the risk caused by potential landslides. To obtain an accurate and reliable reference for landslide prevention, this paper selects nine evaluation factors, including elevation, stratigraphic lithology, average annual rainfall et al, and constructs a landslide susceptibility evaluation index system in the study area through multiple covariance analysis, taking Mangcheng, Yunnan Province as the research object. Subsequently, three typical machine learning models based on support vector machine (SVM), BP neural network and random forest (RF) were used for landslide susceptibility evaluation. Finally, the accuracy of the model evaluation results was compared and validated by using accuracy (ACC), area under the ROC curve (AUC), landslide ratio (Sei) and field fieldwork. The results showed that the RF model had the highest SeV values of 0.867, 0.94 and 9.21 for ACC, AUC, and very high susceptibility areas, respectively; the BP neural network model had the second highest values of 0.829, 0.90 and 9.14; the SVM had the lowest values of 0.794, 0.88 and 6.85; and the RF model results were more consistent with the field study. The results of experiments show that compared with the other two algorithms, the RF algorithm has higher accuracy and reliability in the Mangshi region and is more suitable for landslide susceptibility modeling in the region, and the evaluation results obtained by using the model can provide a theoretical basis and scientific reference for landslide control in the Mangshi region.

  • 磨石沟地区位于青海省格尔木市西南部,距格尔木市区约90 km,处于昆仑山脉东段南坡附近,山势陡峻险要,谷深坡陡。该区以往基础性地质工作程度较高,而矿产调查及资源评价工作侧重于金、铜、钴多金属矿,未开展过系统的锰矿勘查工作。

    2019年,青海省有色第一地质勘查院在磨石沟地区发现锰矿化线索;2020~2021年,开展了磨石沟锰矿的预查、普查工作,大致查明了调查区的地质特征和控矿地质条件,对区内锰矿体的空间分布、规模、形态、产状、矿石质量和品位变化等情况进行了较系统的调查,理清了含锰岩系的含矿建造,填补了格尔木地区黑色岩系中锰矿勘查的空白。

    磨石沟地区大地构造位置位于东昆仑南坡俯冲碰撞杂岩带(KSPZ)(张雪亭等,2007查显锋等,2012祁生胜,2013史连昌等,2017),属于东昆仑增生楔铜-钴-金成矿亚带(潘彤,2017),为活动区造山带,成矿期次多,类型复杂,成矿地质条件优越(谢升浪等,2021)(图1)。

    图  1  青海省磨石沟地区地质图(马延虎等,2004王发明等,2004邓红斌等,2017
    1.柴达木中新生界后造山磨拉石前陆盆地;2.祁漫塔格–都兰新元古界—早古生界缝合带;3.东昆中岩浆弧带;4.昆仑山口–昌马河俯冲增生楔;5.巴颜喀拉双向边缘前陆盆地;6.东昆仑南坡俯冲碰撞杂岩带;7.第四系;8.中—上三叠统希里可特组;9.中—下三叠统洪水川组;10.奥陶系—志留系纳赤台群砾岩组;11.奥陶系—志留系纳赤台群砂岩组;12.早古生界下寒武统沙松乌拉组;13.中—新元古界万保沟群碳酸岩组;14.燕山期石英二长花岗岩;15.加里东期石英二长花岗岩;16.地质界线;17.逆断层;18.正断层;19.不明性质断层;20.向斜;21.背斜;22.主缝合带;23.新元古界—早古生界缝合带俯冲方向;24.晚古生界—早中生界缝合带俯冲方向;25.A型俯冲带;26.矿区范围
    Figure  1.  Geological map of Moshigou area, Qinghai Province

    调查区所处东昆仑南坡俯冲碰撞杂岩带,北端界线为昆中断裂,是本区最主要的大型深断裂。该断裂以北出现古元古界、太古界基底中深变质岩系,以南为新元古界浅变质岩系,且含大量基性火山岩,表明该古老断裂带可能在古元古界即具有雏形(谢成良等,2012)。在昆中断裂南缘的万保沟–小南川一带(调查区西19.5 km)至可可沙-清水泉一带(调查区东454.3 km)产出蛇绿混杂岩。经测量镁铁质岩–超镁铁质岩的全岩Sm–Nd等时线年龄为1 004.71~(1 372±85)Ma,为中新元古界产出;结合同期形成的沉积岩特点表明,昆中断裂带在中新元古界裂陷拉张,形成裂谷有限小洋盆–昆中洋盆(解玉月等,1998桑继镇等,2016)。在洋盆形成后,本区连续沉积中新元古界万宝沟群。之后经历早古生界昆仑洋壳向北俯冲增生,晚古生界—早中生界碰撞造山-断块隆升作用,本区主要造山运动完成,构造格局基本形成(邓红斌等,2017朱坤贺,2022)。

    调查区地层主体属东昆仑南坡分区(孙崇仁等,1997)。区域出露的主要地层有中—新元古界万保沟群碳酸岩组(Pt2-3W 2)、早古生界下寒武统沙松乌拉组(∈1s)、奥陶系—志留系纳赤台群砂岩组(OSN 2)和砾岩组(OSN 3)、中—下三叠统洪水川组(T1-2h)、中—上三叠统希里可特组(T2-3x)及第四系(Q)。含锰岩系沉积于万保沟群碳酸岩组,主成矿期为中新元古代。

    区域断裂和褶皱构造均发育,断裂构造以北西–北西西向断裂发育为主,其次为北东–北东东向断裂。构造变形强烈,伴随有岩浆侵位、区域变质及成矿作用等地质事件,多为地层接触断裂,控制地层、岩浆岩体的展布方向。区域断裂主要受昆中断裂影响,多形成于早—中生界碰撞造山时期,性质为南倾逆冲断层。褶皱以北西–南东为主,与区域主断裂方向一致,卷入地层较简单,主要为中新元古界晋宁运动时期(祁生胜等,2001)和早—中生界碰撞造山时期形成。

    从中古生界到新生界以来经历了漫长的构造演化历史,地质构造复杂,岩浆活动较为发育,经历了加里东期、燕山期等构造岩浆旋回,侵入岩大面积出露,以中酸性岩体、岩脉形式分布。

    磨石沟锰矿区出露的主要地层为中—新元古界万宝沟群碳酸盐岩组灰岩段(Pt2-3W21)和白云岩、板岩段(Pt2-3W22),中—下三叠统洪水川组二段(T1-2h2)。其中万宝沟群碳酸盐岩组灰岩段岩性为灰岩、碳质板岩、砂岩等,白云岩、板岩段岩性为千枚岩、白云岩、碳质板岩、灰岩;洪水川组二段岩性为长石石英砂岩。

    该矿区内构造发育较简单,仅有一条北西–南东向区域断裂,断裂整体倾向为358°~25°,倾角为44°~60°,为一正断层,断层破碎带宽为5~10 m。断裂带中见断层角砾岩、断层泥、构造透镜体出现,断层角砾岩以砂岩、灰岩为主,断层两侧岩石片理化强烈,局部小范围牵引褶皱、揉皱较发育。断裂带上盘出露三叠系洪水川组二段长石石英砂岩,下盘出露万宝沟群碳酸盐组白云岩、板岩段结晶白云岩。断裂为华里西末期至印支期的多期活动断裂(图2)。

    图  2  磨石沟锰矿区地质图
    1.第四系;2.三叠系中下统洪水川组二段;3.中—新元古界万保沟群碳酸岩组白云岩、板岩段;4.长石石英砂岩;5.碳质板岩;6.千枚岩;7.白云岩;8.灰岩;9.地质界线;10.正断层;11.不明性质断层;12.主要锰矿体及编号
    Figure  2.  Geological map of Moshigou manganese mining area

    含锰岩系为中新元古界万宝沟群碳酸盐岩组白云岩、板岩段,分为11层,控制长度为2 400 m,总厚度为308.2~619.2 m,产状为170°~190°∠52°~75°。自下而上依次为底板白云岩、千枚岩(夹层7)、Ⅱ号锰矿层、含锰千枚岩(夹层6)、含锰白云岩(夹层5)、含锰千枚岩(夹层4)、白云岩(夹层3)、含锰千枚岩(夹层2)、Ⅰ号锰矿层、含锰千枚岩(夹层1)、顶板白云岩。地表发现的矿化主要为层状软锰矿化、褐锰矿化,侵染状褐铁矿化;蚀变主要为绢云母化、硅化、碳酸盐化。含锰岩系北东发育一条北西–南东向北倾正断层,将含锰岩系走向东延伸段错断。含锰岩系岩石普遍具有节理和裂隙发育,多见片理化状,岩石变形较强,局部形成揉皱,但地层整体为南倾展布,未发现岩浆岩活动(图3)。

    图  3  磨石沟锰矿区含锰岩系柱状图
    Figure  3.  Histogram of manganese bearing rock series in Moshigou manganese ore area

    锰矿体整体产状与地层一致,在研究区呈南倾单斜展布,主要分布于Ⅰ、Ⅱ锰矿层,延伸稳定,厚度大,具有一定规模。通过少量的槽探、钻探控制,共圈出锰矿体13条,长度为400~1 550 m,真厚度为0.51~9.03 m,累积真厚度达24.17 m,Mn品位为10.27%~18.32%,单样最高品位为26.46%。在Ⅰ号锰矿层中圈出6条锰矿体,其中,Ⅰ-2Mn、Ⅰ-6Mn矿体为碳酸锰主矿体;Ⅱ号锰矿层中圈出7条锰矿体,其中,Ⅱ-5Mn、Ⅱ-6Mn为碳酸锰主矿体。

    通过物相分析,地表锰矿石以水锰矿+褐锰矿、软锰矿为主,通过钻探岩心取样分析,发现深部为碳酸锰矿原生矿,故以碳酸锰矿为主体来评价,以DZ/T0200–2020《铁、锰、铬矿地质勘查规范》中冶金用碳酸锰矿石一般工业指标圈连矿体。磨石沟锰矿的主矿体Mn品位多为10.27%~16.03%,平均品位为12.83%,以碳酸锰贫锰矿石为主。由于Mn/TFe值为2.52~3.92,平均为3.24;P/Mn值为0.01~0.013,平均为0.008;(CaO+MgO)/(SiO2+Al2O3)值为0.18~0.33,平均为0.26(表1)。通过3项指标确定,磨石沟锰矿属于中铁高磷酸性碳酸锰矿。

    表  1  磨石沟锰矿区主矿体特征简表
    Table  1.  Characteristics of main ore body in Moshigou manganese mining area
    主矿体项目厚度MnTFePSiO2CaOMgOAl2O3LossMn/TFeP/Mn(CaO+MgO)/
    (SiO2+Al2O3
    (m)(%)(%)(%)(%)(%)(%)(%)(%)
    Ⅰ-2Mn单工程5.4211.885.180.1540.104.793.899.1714.512.290.0130.18
    Ⅰ-6Mn单工程9.0313.864.010.1637.415.504.217.7515.833.460.0120.22
    Ⅱ-5Mn最小值0.6110.274.080.0831.147.702.026.8021.962.520.0080.26
    最大值2.5516.034.330.2036.419.553.528.4223.423.700.0120.29
    平均值1.4312.444.220.1133.868.832.917.7322.702.950.0090.28
    Ⅱ-6Mn最小值0.9511.043.020.05430.846.641.924.8519.623.660.0050.24
    最大值2.5415.233.890.01442.0512.024.167.1021.013.920.0010.33
    平均值1.4711.923.470.0935.389.693.165.8620.623.440.0080.31
     注:测试单位为青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    矿石矿物以菱锰矿为主,以微晶斑块集合体形式产出,含量约为15%,斑块呈半自形或他形细粒状,粒径为0.03~0.10 mm;其次为软锰矿,呈胶状、纤维状,集合体呈细网脉状或细脉状沿裂隙及方解石晶粒间隙分布,含量约为5%;其他成分主要为微–粉晶方解石(67%)、石英(10%)、铁锰质(2%)、含碳泥质等(1%)。通过扫描电镜鉴定,发现菱锰矿、石英为条带状定向分布,碳质聚集呈纹层状与泥质矿物互混定向排列。

    矿石结构为半自形或他形粒状结晶结构、细网脉填隙结构、交代残余结构、交代假象结构等,构造以变余层状、块状、板状、微细浸染状-细网脉状构造等。

    金属矿物从早到晚生成顺序:菱锰矿、黄铁矿→硫铜钴矿→黄铜矿→软锰矿-褐铁矿。

    在锰矿床的形成过程中,需要较好的构造条件、适宜的沉积相和古地理环境(江沙等,2019)。磨石沟地区在中新元古界昆中断裂裂陷拉张,形成裂谷有限小洋盆后开始连续沉积万宝沟群,该地层分为3个岩组,分别为火山岩组、碳酸岩组、上碎屑岩组。其中火山岩组为典型的洋岛玄武岩,沉积环境为半深海斜坡沟谷–斜坡扇环境,盖层碳酸盐岩组沉积于火山岩组之上,沉积环境为静水低能碳酸盐岩台地沉积环境,二者共同构成了洋岛–海山的“双层型”结构(蔡雄飞等,2007许鑫等,2016李宪栋,2017)。

    近年来,大多数专家主要通过锰矿石主量、微量元素等地球化学特征进行锰质来源的研究(伊帆等,2017石浩等,2019刘虎等,2019李荣志等,2021)。

    Al/(Al+Fe+Mn)值作为热水沉积的指示参数,值越小代表沉积物中热水沉积的产物含量越高,典型热水沉积物比值<0.35(Bostom et al.,1969Bostrom el al.,1973)。纯热水参与沉积的岩石中Al/(Al+Fe+Mn)值低至0.01,正常海洋沉积岩石中这一比值可达0.6(Adachi et al.,1986)。磨石沟矿区Al/(Al+Fe+Mn)值为0.1~0.28(表2),平均为0.17,远比正常海洋作用沉积岩石的比值低,表明碳酸锰矿石的物质成分与热水沉积有关(高永宝等,2017

    表  2  磨石沟锰矿区碳酸锰矿石化学成分及参数表
    Table  2.  Chemical composition and parameters of manganese carbonate ore in Moshigou manganese mining area
    样品编号Mn(%)Fe(%)Al2O3(%)SiO2(%)Al/(Al+Fe+Mn)SiO2/Al2O3
    MS2021QZ01‐H1210.903.505.6233.260.175.92
    MS2021QZ01‐H1311.343.024.8530.840.156.36
    MS2021QZ01‐H1810.884.086.8035.060.195.16
    MS2021QZ01‐H2010.824.188.2131.100.223.79
    MS2021QZ01‐H4110.985.408.2442.300.215.13
    MS2021TC01‐H1922.634.417.3830.590.134.14
    MS2021TC01‐H3211.625.1710.9748.700.264.44
    MS2021TC01‐H3426.463.726.0133.650.105.60
    MS2021TC01‐H5512.305.798.4434.820.204.13
    MS2021TC01‐H5616.066.268.0130.990.163.87
    MS2021TC01‐H5716.173.485.5129.060.135.27
    MS2021TC01‐H5812.694.266.3832.300.175.06
    MS2021TC01‐H6017.763.766.9633.800.154.86
    MS2021TC01‐H6114.804.408.5039.360.194.63
    MS2021TC01‐H6215.806.207.9434.520.164.35
    MS2021TC01‐H6315.134.225.9628.340.144.76
    MS2021TC01‐H6415.284.516.9431.680.164.56
    MS2021TC02‐H4613.664.507.5542.620.185.65
    MS2021TC02‐H4719.592.984.7428.560.106.03
    MS2021TC02‐H4818.542.854.5830.430.106.64
    MS2021TC02‐H4915.722.984.8127.900.125.80
    MS2021TC02‐H5012.024.429.1440.960.234.48
    MS2021TC02‐H5215.574.428.8241.450.194.70
    MS2021TC02‐H5311.214.6510.3945.370.264.37
    MS2021TC02‐H5412.623.024.9027.710.145.66
    MS2021TC02‐H5512.163.005.3027.880.165.26
    MS2021TC02‐H11812.15.3613.0445.790.283.51
    MS2021TC02‐H12112.913.816.1628.950.164.70
    MS2021TC02‐H12214.764.847.9636.440.184.58
    MS2021TC02‐H12514.354.704.5034.960.117.77
     注:测试单位:青海省有色地质测试中心。采用光谱–化学分析法测试,仪器为ICAP-6300 ICP等离子体发射光谱仪A-7,检出限0.001×10−2,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    SiO2/Al2O3值可用于判定锰矿石与陆源、生物、热水沉积的关系,陆壳中的SiO2/Al2O3值为3.6,超过此值说明有热水沉积的补充(Crerar el al.,1982Taylor et al.,1985秦元奎等,2010姚远等,2016)。磨石沟矿区碳酸锰矿石SiO2/Al2O3值为3.87~7.77,平均为5.03,表明成矿与热水沉积有关。

    Ni/Co值<3.6是热水沉积的典型特征(刘志臣等,2015吴佳昌等,2019)。磨石沟锰矿区Ni/Co值为0.70~1.83(表3),平均为1.13,其中,锰矿石Ni/Co值为0.70~0.98,顶底板岩石Ni/Co值为1.81~1.83,具有明显的差异,表明含矿层与顶底板受热水沉积影响不同。

    表  3  磨石沟锰矿区碳酸锰矿石微量元素及参数表
    Table  3.  Table of trace elements and parameters of manganese carbonate ore in Moshigou manganese mining area
    样品编号岩性V(%)Co(%)Ni(%)Ni/CoV/(V+Ni)
    QZ01‐H07锰矿石0.02400.00470.00460.980.84
    QZ01‐H14锰矿石0.00480.0040.00380.950.56
    QZ01‐H18锰矿石0.01000.00460.00320.700.76
    QZ01‐H103锰矿石0.00500.00480.00350.730.59
    ZK0001‐H01底板千枚岩0.01700.00210.00381.810.82
    ZK0001‐H32锰矿石0.00450.00370.00330.890.58
    ZK0001‐H96顶板白云岩0.01000.00230.00421.830.7
     注:测试单位:青海省有色地质测试中心。主要采用X荧光法(XRF)测试,仪器为日本理学公司Primus-Ⅱ型,检出限5.96×10−6,可靠性良好。
    下载: 导出CSV 
    | 显示表格

    在海水中Ba的含量较低,正常海水沉积物中不易富集,而在现在海底热水中含量较高,为热水沉积的重要标志元素(纪冬平等,2022)。磨石沟锰矿石Ba含量为4650×10−6~9910×10−6,平均为6877×10−6,围岩Ba含量为491×10−6~2460×10−6,平均为793×10−6,明显高于上地壳平均值260×10−6,表明锰矿沉积受热水沉积的影响。

    V/(V+Ni)值为0.46~0.57时属于弱氧环境,0.57~0.83为贫氧环境,0.83~1为缺氧环境(Tyson,1991Jones et al.,1994Tribovillard et al.,2006尹青,2015)。磨石沟锰矿石的V/(V+Ni)值为0.56~0.84,平均为0.69,显示为贫氧还原环境形成。

    前人在磨石沟西侧采集的万宝沟群碳酸盐组岩石进行基质系统和外来系统Ca、Mg含量对比,认为该地层为半深水–深水相的沉积环境,再结合遗迹化石、粒度分析、槽模构造等进一步分析表明万宝沟群碳酸盐岩组为浅海陆棚远端–斜坡深水沉积,在海退期为锰质的沉积提供了有利条件(郭宪璞等,2004)。根据调查区沉积环境、构造演化、造山运动、锰质来源等因素综合分析,初步推测区内成矿模式,即中新元古界磨石沟地区开始形成有限小洋盆,洋盆拉张发育过程中,基底来源的含锰热水与中远距离的陆源锰质慢慢随海水运移并储存在洋盆中,随着海退影响,深水局限盆地逐步过渡形成浅水盆地,浅海盆地中形成静水低能半封闭的贫氧还原环境,受生物、化学富集作用,锰质在贫氧还原界面附近随陆源碎屑、硅质、方解石等沉积形成原生的碳酸锰矿(图4)。

    图  4  磨石沟锰矿区成矿模式示意图
    1.灰岩;2.万宝沟群碳酸盐岩组灰岩段;3.万宝沟群碳酸盐岩组白云岩段;4.含锰岩系;5.碳酸锰矿;6.断层;7.相对运动方向;8.运动方向
    Figure  4.  Schematic diagram of metallogenic model of Moshigou manganese mine area

    锰矿床产于万宝沟群碳酸盐岩组上部,为浅变泥质岩及碳酸盐岩为主的建造,层位稳定,属于浅海台盆相沉积,发育水平层理,前人发现有叠层石产出,证明成矿期具有丰富的藻类活动,该时期是较为稳定的沉积时期(王国灿等,2007)。沉积岩微相按岩性可分为碳质板岩–菱锰矿微相、碳质板岩–白云岩–菱锰矿微相。含锰岩系下部沉积了较厚大的灰岩层,而含锰岩系以白云岩和浅变质岩为主,显示出水位由深到浅的过程。

    目前,磨石沟锰矿区仍处于初始找矿阶段,已发现矿体在走向上自南东到西北具有从尖灭、断续、薄层到连续、稳定、厚大的渐变沉积特点,其中断续、尖灭沉积区段的锰矿石具有条带状、薄层状特征,连续、稳定沉积区段具有纹层状、透镜状、厚层状特征。结合国内典型热水沉积锰矿床的成矿规律分析可知:断续、尖灭到连续、稳定沉积区段符合热水沉积矿床边缘相–过渡相的矿石典型特征,而具有鲕豆状、眼球状、气泡状、气液喷溢沉积等构造的中心相厚大富锰矿(薛友智等,2019沈红钱等,2021刘振等,2021)尚未探明。磨石沟锰矿成矿期后经历的构造活动主要为晚古生界—早中生界碰撞造山-断块隆升作用,形成多条北西—南东向脆性断裂,其中1条断裂将含锰岩系走向东延伸段错断,含锰岩系走向西延伸段无断层和岩浆岩发育,矿床保存条件较好。

    (1)磨石沟锰矿区共圈出锰矿体13条,长度为400~1 550 m,真厚度为0.51~9.03 m,累积矿体真厚度达24.17 m,Mn品位为10.27%~18.32%,具有规模较大,埋深小,走向和倾向延伸稳定的特点,具有成为中–大型台盆相沉积锰矿床的潜力。

    (2)磨石沟锰矿以碳酸锰贫锰矿石为主,P、SiO2含量较高。由于Mn/TFe值平均为3.24,P/Mn值平均为0.008,(CaO+MgO)/(SiO2+Al2O3)值平均为0.26,属于中铁高磷酸性碳酸锰矿。

    (3)磨石沟矿区Al/(Al+Fe+Mn)值为0.1~0.28,平均值为0.17;SiO2/Al2O3值为3.87~7.77,平均值为5.03;Ni/Co值为0.70~1.83,平均值为1.13,具有热水沉积特点。磨石沟锰矿区含锰岩系以铁质岩、锰质岩、硅质岩等沉积岩为主,富含Fe、Ba、Si、V、Ni等热水沉积指示元素;锰矿体走向上具有具条带状、薄层状特征,连续稳定沉积区具有纹层状、厚层状沉积特点;锰矿石结构含半自形或他形粒状结晶结构、细网脉填隙结构,构造以块状、板状、微细浸染状-细网脉状构造为主;矿石矿物中菱锰矿以微晶斑块集合体条带状分布,石英为条带状定向分布,碳质聚集呈纹层状与泥质矿物互混定向排列,表明磨石沟锰矿的形成与热水沉积关系密切。

    (4)磨石沟锰矿区属于碳酸盐岩地台上的浅海台盆相沉积,沉积时间长且稳定,含锰岩系厚大,目前仅仅围绕锰矿沉积的过渡相-边缘相展开了勘查,通过进一步的控制和追索,有望找到锰矿沉积中心相的厚大富锰矿体。

  • 图  1   研究区地理位置及样本分布

    Figure  1.   Geographical location of the study area and distribution of sample

    图  2   评价因子分级

    Figure  2.   Evaluation factor classification

    图  3   研究区滑坡易发性结果(a、b、c分别为SVM、BP、RF模型下的滑坡易发性结果)

    Figure  3.   Landslide susceptibility results in the study area (a, b and c are landslide susceptibility results under SVM, BP and RF models, respectively)

    图  4   测试样本ROC曲线

    Figure  4.   Test sample ROC curve

    图  5   局部滑坡易发性结果图及野外考察照片

    a、b、c. 分别为SVM、BP神经网络、RF算法得到的局部滑坡易发性图;d、e. 分别为野外实地考察图

    Figure  5.   Amplification of local landslide susceptibility results and field study

    表  1   评价因子多重共线性分析结果

    Table  1   Results of multiple covariance analysis of evaluation factors

    评价因子容差VIF评价因子容差VIF
    高程 0.781 1.281 起伏度 0.176 5.693
    坡度 0.159 6.298 地层岩性 0.990 1.010
    坡向 0.979 1.022 年均降雨量 0.981 1.019
    平面曲率 0.708 1.413 土地利用 0.984 1.017
    剖面曲率 0.869 1.151
    下载: 导出CSV

    表  2   测试样本精度评价

    Table  2   Test sample accuracy evaluation

    评价指标评价模型
    SVMBP神经网络RF
    TP(真阳性)130143138
    FP(假阳性)293129
    TN(真阴性)139138156
    FN(假阴性)412716
    ACC(准确度)0.7940.8290.867
    下载: 导出CSV

    表  3   易发性分区合理性检验结果

    Table  3   Rationality test results of susceptibility zoning

    评价
    模型
    易发区分级面
    积(km2
    滑坡
    点(个)
    Mei(%)Dei(%)Sei(%)
    SVM极低(I)1260.044743.518.320.19
    低(II)624.74721.578.320.39
    中(III)449.24915.518.670.56
    高(IV)328.0410911.3319.291.70
    极高(V)234.113138.0855.406.85
    BP神经
    网络
    极低(I)1282.662744.294.780.11
    低(II)619.453121.395.490.26
    中(III)443.814215.327.430.49
    高(IV)330.447311.4112.921.13
    极高(V)219.733927.5969.389.14
    RF极低(I)1262.131743.583.000.07
    低(II)684.862023.653.540.15
    中(III)422.733714.606.550.45
    高(IV)287.12619.9110.801.09
    极高(V)239.254308.2676.119.21
    下载: 导出CSV
  • 陈玉萍, 袁志强, 周博, 等. 遗传算法优化BP网络在滑坡灾害预测中的应用研究[J]. 水文地质工程地质, 2012, 39(1): 114-119

    Chen Yuping, Yuan Zhiqiang, Zhou Bo, et al. Application of back propagation neural networks with optimization of genetic algorithms to landslide hazard prediction[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 114-119. (in Chinese)

    杜国梁, 杨志华, 袁颖, 等. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5): 102-111

    Du Guoliang, Yang Zhihua, Yuan Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet trafficcorridor using logistic regression- information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese)

    黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79–90

    HUANG Faming, HU Songyan, YAN Xueya, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology 2022, 41(2): 79–90.

    黄武彪, 丁明涛, 王栋, 等. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J]. 地球科学, 2022, 47(6): 2015-2030

    Huang Wubiao, Ding Mingtao, Wang Dong, et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-tibet traffic torridor[J]. Earth Science, 2022, 47(6): 2015-2030. (in Chinese)

    黄煜, 谢婉丽, 刘琦琦, 等. 基于GIS与MaxEnt模型的滑坡易发性评价—以铜川市中部城区为例[J]. 西北地质, 2023, 56(1): 266-275. doi: 10.12401/j.nwg.2022001

    HUANG Yu, XIE Wanli, LIU Qiqi, et al. Landslide Susceptibility Assessment Based on GIS and MaxEnt Model: Example from Central Districts in Tongchuan City[J]. Northwestern Geology, 2023, 56(1): 266−275. doi: 10.12401/j.nwg.2022001

    贾俊, 毛伊敏, 孟晓捷, 等. 深度随机森林和随机森林算法的滑坡易发性评价对比—以汉中市略阳县为例[J]. 西北地质, 2023, 56(3): 239−249.

    JIA Jun, MAO Yimin, MENG Xiaojie, et al. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City[J]. Northwestern Geology, 2023, 56(3): 239−249.

    康孟羽, 朱月琴, 陈晨, 等. 基于多元非线性回归和BP神经网络的滑坡滑动距离预测模型研究[J]. 地质通报, 2022, 41(12): 2281−2289.

    KANG Mengyu, ZHU Yueqin, CHEN Chen, et al. Research on landslide sliding distance prediction model based on multiple nonlinear regression and BP neural network[J]. Geological Bulletin of China, 2022, 41(12): 2281−2289.

    李东, 周可法, 孙卫东, 等. BP神经网络和SVM在矿山环境评价中的应用分析[J]. 干旱区地理, 2015, 38(1): 128-134

    Li Dong, Zhou Kefa, Sun WeiDong, et al. Application of BP neural network and SVM in mine environmental assessment[J]. Arid Land Geography, 2015, 38(1): 128-134. (in Chinese)

    李宇嘉, 陈宁生, 杨溢, 等. 汉源县中海村“8·21”雨后型滑坡特征与成因[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 185−195.

    LI Ningjia, CHENG Ningsheng, YANG Yi, et al. Characteristics and causes of 8·21 rainfall-induced landslide at Zhonghai Village, Hanyuan County, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(2): 185−195.

    林荣福, 刘纪平, 徐胜华, 等. 随机森林赋权信息量的滑坡易发性评价方法[J]. 测绘科学, 2020, 45(12): 131-138

    Lin Rongfu, Liu Jiping, Xu Shenghua, et al. Evaluation method of landslide susceptibility based on random forest weighted information[J]. Science of Surveying and Mapping, 2020, 45(12): 131-138. (in Chinese)

    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1085-1091

    Liu Jian, Li Shulin, Chen Tao. Landslide susceptibility assesment based on optimized random forest model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085-1091. (in Chinese)

    刘璐瑶, 高惠瑛, 李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 121-129

    Liu Luyao, Gao Huiying, Li Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia county[J]. Periodical of Ocean University of China, 2021, 51(10): 121-129. (in Chinese)

    刘希林, 庙成, 田春山. 区域滑坡和泥石流灾害两种危险性评价方法的比较分析[J]. 防灾减灾工程学报, 2017, 37(1): 71-78

    Liu Xilin, Miao Cheng, Tian Chunshan. Comparative analysis of two methods for assessing hazard of landslide and debris-flow on a regional scale[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(1): 71-78. (in Chinese)

    马啸, 王念秦, 李晓抗, 等. 基于RF-FR模型的滑坡易发性评价——以略阳县为例[J]. 西北地质, 2022, 55(3): 335−344.

    MA Xiao, WANG Nianqin, LI Xiaokang, YAN Dong, LI Jialin. Assessment of Landslide Susceptibility Based on RF-FR Model: Taking Lueyang County as an Example[J]. Northwestern Geology, 2022, 55(3): 335−344.

    孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1∶50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology, 2022, 55(2): 249−259.

    唐睿旋, 晏鄂川, 唐薇. 基于粗糙集和BP神经网络的滑坡易发性评价[J]. 煤田地质与勘探, 2017, 45(6): 129-138

    Tan Ruixuan, Yan Echuan, Tan Wei. Landslide susceptibility evaluation based on rough set and back-propagation neural network[J]. Coal Geology & Exploration, 2017, 45(6): 129-138. (in Chinese)

    孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China[J]. Northwestern Geology, 2022, 55(3): 96−107.

    田媛, 巨能攀, 解明礼, 等. 滑坡编录表达模式对易发性评价结果的影响[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 606−615.

    TIAN Yuan, JU Nengpan, XIE Mingli, et al. Analysis of the impact of landslide cataloguing expression patterns on the evaluation results of landslide susceptibility[J], Journal of Chengdu University of Technology (Science Technology Edition), 2022, 49(5): 606−615.

    王朋伟, 安玉科. 滑坡匀速变形阶段快速诊断方法研究[J]. 西北地质, 2023, 56(5): 197−203.

    WANG Pengwei, AN Yuke. Research on Rapid Diagnosis Method of Landslide’s Uniform Deformation Stage[J]. Northwestern Geology, 2023, 56(5): 197−203.

    王海芝, 王颂, 周剑, 等. 樟木堆积体斜坡动力稳定性与极限承载力评价[J]. 西北地质, 2022, 55(1): 262−273.

    WANG Haizhi, WANG Song, ZHOU Jian, et al. Dynamic Stability Analysis and Ultimate Bearing Capacity Evaluation of Zhangmu Landslide Deposit[J]. Northwestern Geology, 2022, 55(1): 262−273.

    王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12): 2244-2260 doi: 10.12082/dqxxkx.2021.210057

    Wang Yi, Fang Zhice, Niu Ruiqing, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-information Science, 2021, 23(12): 2244-2260. (in Chinese) doi: 10.12082/dqxxkx.2021.210057

    吴孝情, 赖成光, 陈晓宏, 等. 基于随机森林权重的滑坡危险性评价: 以东江流域为例[J]. 自然灾害学报, 2017, 26(5): 119-129

    Wu Xiaoqing, Lai Chengguang, Chen Xiaohong, et al. A landslide hazard assessment based on random forest weight: a case study in the Dongjiang River Basin[J]. Journal of Natural Disasters, 2017, 26(5): 119-129. (in Chinese)

    杨平芬, 李艳美, 杨保住. 云南省芒市土壤肥力现状及变化趋势[J]. 云南农业科技, 2014, (5): 4-7 doi: 10.3969/j.issn.1000-0488.2014.05.001

    Yang Pingfen, Li Yanmei, Yang Baozhu. Status and trends of soil fertility in Mangshi, Yunnan province[J]. Yunnan Agricultural Science and Technology, 2014, (5): 4-7. (in Chinese) doi: 10.3969/j.issn.1000-0488.2014.05.001

    张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2): 260-270

    Zhang Linfan, Wang Jiayun, Zhang Maosheng, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2): 260-270. (in Chinese)

    郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144

    Zheng Yingkai, Chen Jianguo, Wang Chengbin, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi city[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144. (in Chinese)

    周定义, 左小清, 喜文飞, 等. 联合SBAS-InSAR和PSO-BP算法的高山峡谷区地质灾害危险性评价[J]. 农业工程学报, 2021, 37(23): 108-116 doi: 10.11975/j.issn.1002-6819.2021.23.013

    Zhou Dingyi, Zuo Xiaoqing, Xi Wenfei, et al. Combined SBAS-InSAR and PSO-BP algorithm for evaluating the risk of geological disasters in alpine valley regions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 108-116. (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.23.013

    周宇, 常鸣, 孙文静, 等. 基于改进证据权重法的北海道地震同震滑坡易发性评价[J]. 地理与地理信息科学, 2022, 38(1): 138-144

    Zhou Yu, Chang Ming, Sun Wenjing, et al. Susceptibility evaluation of Hokkaido earthquake coseismic landslides based on improved weights of evidence method[J]. Geography and Geo-Information Science, 2022, 38(1): 138-144. (in Chinese)

    Adnan Ozdemir, Tolga Altural. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey[J]. Journal of Asian Earth Sciences, 2013, 64: 180-197. doi: 10.1016/j.jseaes.2012.12.014

    L Ayalew, H Yamagishi. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005, 65(1): 15-31.

    Binh Thai Pham, Biswajeet Pradhan, Dieu Tien Bui, et al. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India)[J]. Environmental Modelling & Software, 2016, 84: 240-250.

    Wei Chen, Hamid Reza Pourghasemi, Mahdi Panahi, et al. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques[J]. Geomorphology, 2017, 297: 69-85. doi: 10.1016/j.geomorph.2017.09.007

    FC Dai, CF Lee, YY Ngai. Landslide risk assessment and management: an overview[J]. Engineering Geology, 2002, 64(1): 65-87. doi: 10.1016/S0013-7952(01)00093-X

    Francisco Gutiérrez, Rogelio Linares, Carles Roqué, et al. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): Detailed geological geomorphological mapping, trenching and electrical resistivity imaging[J]. Geomorphology, 2015, 241: 224-242. doi: 10.1016/j.geomorph.2015.04.016

    Harlow L L. The Essence of multivariate thinking: Basic themes and methods[M]. London: Lawrence ErlbaumAssociates, 2005: 199-207.

    Haydar Y. Hussin, Veronica Zumpano, Paola Reichenbach, et al. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model[J]. Geomorphology, 2016, 253: 508-523. doi: 10.1016/j.geomorph.2015.10.030

    Rumelhart d Hinton-G-Williams-R. . Learning representations by back-propagatingerrors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0

    Faming Huang, Zhongshan Cao, Jianfei Guo, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena, 2020, 191: 104580. doi: 10.1016/j.catena.2020.104580

    Guan-Wei Lin, Hongey Chen, Tsun-Ying Shih, et al. Various links between landslide debris and sediment flux during earthquake and rainstorm events[J]. Journal of Asian Earth Sciences, 2012, 54-55: 41-48. doi: 10.1016/j.jseaes.2012.03.012

    Markus Meinhardt, Manfred Fink, Hannes Tuenschel. Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics[J]. Geomorphology, 2015, 234: 80-97. doi: 10.1016/j.geomorph.2014.12.042

    Pham, BT, Shirzadi, et al. A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India[J]. Int J Sediment Res, 2018, 2018, 33(2): 157-170.

    B. Pradhan. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches[J]. Journal of the Indian Society of Remote Sensing, 2010, 38(2): 301-320. doi: 10.1007/s12524-010-0020-z

    Ryuta Tamura, Ken Kobayashi, Yuichi Takano, et al. Mixed integer quadratic optimization formulations for eliminating multicollinearity based on variance inflation factor[J]. Journal of Global Optimization, 2019, 73(2): 431-446. doi: 10.1007/s10898-018-0713-3

    Shen Chaoyong, Feng Zhongke, Xie Chou, et al. Refinement of Landslide Susceptibility Map Using Persistent Scatterer Interferometry in Areas of Intense Mining Activities in the Karst Region of Southwest China[J]. Remote Sensing, 2019, 11(23): 2821-2843. doi: 10.3390/rs11232821

    Vijendra Kumar Pandey, Kaushal Kumar Sharma, Hamid Reza Pourghasemi, et al. Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India[J]. Catena, 2019, 182: 104150. doi: 10.1016/j.catena.2019.104150

    Chao Zhou, Kunlong Yin, Ying Cao, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120. doi: 10.1016/j.enggeo.2016.02.009

    Zhifu Zhu, Shu Gan, Xiping Yuan, et al. Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China)[J]. Sensors, 2022, 22(15): 5587. doi: 10.3390/s22155587

图(5)  /  表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  63
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-11-02
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2024-02-19

目录

/

返回文章
返回