Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions
-
摘要:
栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区是秦岭造山带内152~140 Ma后碰撞造山环境下形成的两个典型斑岩型矿集区,其成矿差异显著,但控制因素尚不清楚。笔者收集两个矿集区的全岩地球化学、Sr-Nd-Hf同位素、锆石和磷灰石成分,从岩浆源区、岩浆水含量、氧逸度、挥发分和S含量等方面进行对比研究,揭示其成矿差异性的主控因素。柞水−山阳矿集区Cu-Mo矿的εHf(t)和εNd(t)值为−5~2和−6.6~−1.5,(87Sr/86Sr)i值接近于上地幔(平均为0.7051),指示岩浆源区为增厚的新生下地壳部分熔融与幔源岩浆的混合。栾川矿集区具有相对较低的εHf(t)和εNd(t)值(平均值为−18.38和−14.63)以及较老的Hf二阶段模式年龄表明富Mo-W斑岩来源于古老的太华群基底和扬子板块俯冲陆壳沉积物部分熔融。柞水−山阳矿集区和栾川矿集区成矿斑岩具有高Sr低Y,全岩Eu/Eu*>0.6,锆石饱和温度较低(<750 ℃),锆石EuN/EuN*>0.3,锆石CeN/CeN*>100,Ce/Nd>10,全岩V/Sc>5,氧化还原状态>FMQ+3等,指示其成矿岩浆均具有高水含量和高氧逸度特征。此外,柞水−山阳矿集区斑岩Cu-Mo体系更富集Cl ,而栾川矿集区斑岩Mo-W体系更富集F,二者的S含量相近。以上表明岩浆源区的不同是造成二者成矿差异的根本原因;Cl和F作为Cu和Mo在岩浆热液中迁移的主要配体,是造成两个矿集区成矿差异的另一关键因素;富水、高S和高氧逸度岩浆是两个矿集区斑岩型矿床形成的重要条件,但并不是造成矿化差异的直接原因。
Abstract:The Luanchuan Mo-W ore district and the Zhashui-Shanyang Cu-Mo ore district are two typical porphyry ore districts formed in the post-collision setting during 152-140Ma in the Qinling Orogenic Belt. Despite significant differences in their mineralization, the controlling factors remain unclear. This study collected whole-rock geochemical data, Sr-Nd-Hf isotopes, and the compositions of zircon and apatite from both ore districts. A comparative analysis was conducted on aspects such as magmatic source, water content, oxygen fugacity, volatiles(F, Cl)and sulfur content to reveal the key controlling factors of their metallogenic differences. The Zhashui-Shanyang Cu-Mo ore district shows εHf(t) and εNd(t) variations ranging from −5 to 2 and −6.6 to −1.5, with (87Sr/86Sr)i value close to the upper mantle (averaging 0.7051), indicating a mixture of melting of thickened juvenile lower crustal components with mantle-derived magmas in the magma source. The Luanchuan Mo-W ore district exhibits relatively low εHf(t) and εNd(t) values (averaging −18.38 and −14.63) and older Hf two-stage model ages, suggesting that the Mo-W-rich porphyries originated from the ancient Taihua Group basement and partial melting of the Yangtze Plate subducted continental crust sediment. Both ore districts' mineralized porphyries have high Sr and low Y, whole-rock Eu/Eu*>0.6, low zircon saturation temperatures (<750 ℃), zircon Eu/Eu*>0.3, zircon CeN/CeN*>100, Ce/Nd>10, whole-rock V/Sc>5, and oxidation state>FMQ+3, indicating characteristics of high water content and high oxygen fugacity in their mineralizing magmas. Furthermore, the Cu-Mo system in the Zhashui-Shanyang ore district is enriched in Cl, while the Mo-W system in the Luanchuan ore district is enriched in F, with similar S contents. These differences in the magma source are the fundamental reasons for the mineralization disparities between the two districts. Cl and F, as the main ligands for the migration of Cu and Mo in magmatic hydrothermal fluids, are another key factor causing the mineralization differences between the two ore districts. Enriched water, high S, and high oxygen fugacity magmas are important conditions for the formation of porphyry ore deposits in both districts, but they are not the direct causes of the mineralization differences.
-
斑岩型矿床是在时间、空间和成因上与浅成-超浅成中酸性斑岩体有关的细脉浸染型矿床,具有埋藏浅、低品位、大吨位等特点,提供了世界上近75%的Cu、50%的Mo和20%的Au,以及绝大部分Ag、Zn、Sn、W等,在所有矿床类型中具有非常重要的经济意义(Richards,2003;Cooke et al.,2005;Sillitoe,2010)。前人基于环太平洋俯冲带岩浆弧环境(岛弧和陆缘弧)下斑岩矿床的研究,认为在大洋岩石圈板块俯冲的根本动力学机制下,大洋板片携沉积物俯冲和深部脱水造就了富水、高S和高氧逸度(ΔFMQ=1~2)环境,使得硫化物转变为硫酸盐,Cu和Au从硫化物中释放并进入熔体,随岩浆MUSH过程在浅部发生流体出溶而成矿(Lowell et al.,1970;Sillitoe,1972,1997,2010;Richards,2003,2011;Cooke et al.,2014;王瑞等,2020;杨航等,2023)。近年来,国内外学者提出了斑岩型矿床还可以形成于与俯冲无关的非弧环境(例如:陆-陆碰撞、陆内造山环境),其在地球动力学背景、深部作用过程、岩浆起源演化、流体和金属来源等方面存在重要差异,而显著区别于岩浆弧环境下的斑岩型矿床(侯增谦等,2009;陈建林等,2011;Hou et al.,2011,2015b,2015c)。
秦岭造山带作为全球最典型的大陆复合型造山带之一(张国伟等,2019;陶威等,2021;冉亚洲等,2024),形成了一系列在陆内碰撞造山环境下的斑岩-矽卡岩型Cu-Mo、Mo-W、Cu-Au矿床,其中以斑岩型Mo矿床尤其发育。例如,位于华北板块南缘的东秦岭钼矿带是仅次于美国西部Climax-Henderson 斑岩钼矿带的全球第二大钼矿带(朱赖民等,2008),已探明的Mo金属量至少达8.43 Mt(Mao et al.,2011)。河南省栾川矿集区斑岩–矽卡岩型Mo-W矿床是东秦岭钼成矿带的重要组成部分(唐利等,2014),代表性矿床有南泥湖-三道庄、上房沟、石宝沟、东鱼库等,这些矿床的形成年龄集中在148~141 Ma(Li et al.,2004,2015;李诺等,2007;Mao et al.,2008;向君峰等,2012;张云辉,2014;王赛等,2014;Qian et al.,2022;Yang et al.,2022)。近些年来,在南秦岭柞水–山阳地区发现了一批以Cu和Cu-Mo为主的斑岩-矽卡岩型矿床和矿点,如池沟、小河口、冷水沟、园子街等,其成矿年龄集中于152~142 Ma(吴发富, 2013;Xie et al.,2015,2017;Zhang et al.,2021;Chen et al.,2023;Zhang et al.,2023 )。前人研究表明,秦岭造山带在经历了新元古代至早中生代的洋–陆俯冲造山作用和晚古生代至中生代的洋–陆俯冲到陆–陆俯冲碰撞造山作用后,在中新生代进入了陆内碰撞后造山抬升阶段(张国伟等,2019;王汉辉等,2023)。从成矿时代和构造背景的角度来看,柞水-山阳矿集区和栾川矿集区斑岩型矿床同属燕山期构造演化和同期花岗质岩浆作用下的产物,但其矿种类型却明显不同,前者主要为Cu-Mo矿床,后者主要为Mo-W矿床,目前对于造成二者成矿差异的原因还没有统一的认识(陈雷等,2015,2017;Xie et al.,2017)。
控制斑岩矿床成矿差异和成矿潜力的可能因素有:岩浆源区、岩浆水含量和氧逸度、岩浆S含量和挥发分、成矿深度、岩浆房的形状和大小、岩浆作用持续时间、岩浆混合作用等(Sillitoe,2010;Hou et al.,2013,2015b;Lu et al.,2013;Richards,2015;Yang et al.,2015;侯增谦等,2020;Luo et al.,2020;Tang et al.,2022),其中岩浆源区的性质对斑岩型矿床的形成起到关键控制作用。此外,岩浆氧逸度、水含量、 S和卤素(F、Cl)含量等条件制约元素在熔体/流体相中的分配和地球化学行为,亦是影响斑岩矿床以何种成矿金属为主的重要因素(Berry et al.,2009;Koleszar et al.,2009;Lu et al.,2015;Richards,2015;Yang et al.,2015;Williamson et al.,2016;侯增谦等,2020;王瑞等,2021)。笔者选取秦岭造山带斑岩成矿系统中栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区为研究对象,统计并分析其全岩地球化学、Sr-Nd-Hf同位素、锆石和磷灰石成分数据,从而限制两个矿集区的岩浆源区、岩浆水含量和氧逸度、挥发分和S含量等条件,进而剖析其内在联系,以期对控制其成矿差异的原因进行约束;这对于揭示后碰撞环境下斑岩型矿床的形成过程和斑岩型Cu-Mo、Mo-W矿的找矿勘查具有重要的指示意义。
1. 区域地质特征
秦岭造山带是华北板块、扬子板块和秦岭微板块在不同发展阶段以不同构造机制演化而形成的大陆复合型造山带,由华北克拉通南缘(华熊地块)、北秦岭造山带、南秦岭造山带、扬子克拉通北缘等4个地块组成(张国伟等,2001,2019;Dong et al.,2021),由北向南被洛南–栾川断裂、商丹缝合带、勉略缝合带所分割(图1a),分别产生于不同期次的增生和碰撞造山作用。
本次研究的栾川矿集区和柞水-山阳矿集区分别位于东秦岭华熊地块和中秦岭弧前盆地(王宗起等,2009)。华熊地块是在前寒武纪基底的基础上卷入秦岭造山作用中形成的,其基底由太古宇太华群构成,为一套中高级区域变质的中基性–中酸性火山–沉积变质岩系。覆于基底之上的前寒武纪盖层有: 中元古界熊耳群火山岩,官道口群碎屑岩–碳酸盐岩,新元古界栾川群陆源碎屑岩-碳酸盐岩,新元古界—下古生界陶湾群钙镁质碳酸盐岩–碎屑岩–混杂堆积岩(王晓霞等,2011)。中秦岭弧前盆地系主要发育中、上泥盆统和石炭系以及少量前寒武系,岩性以粉砂岩、砂岩、绢云板岩、结晶灰岩、石英杂砂岩及白云岩为主,系一套滨、浅海相–河流三角洲相沉积组合(陈雷等,2014b)。两区内断裂构造十分发育,以大型EW、NW向断裂为主,划分了区域基本构造格架,如山阳–风镇断裂和栾川断裂。大量的次级NE、NNE向断裂叠加、穿插于主断裂之上,共同对区域沉积特征、岩体和矿床分布产生了重要影响。
区内岩浆作用十分发育,主要经历了新元古代、古生代、中生代岩浆构造热事件,并以此发育了相应的一系列花岗岩系(王晓霞等,2011)。其中与本次研究的成矿作用相关的晚中生代花岗质岩浆作用非常发育, 主要分布在东秦岭,出露形式主要为大岩基和小岩株两类, 在南秦岭零星出露有小岩株(王晓霞等,2015)(图1b),正是此类小岩体与晚侏罗世—早白垩世成矿作用密切相关。前人针对这些成矿与非成矿岩体,做了大量的测年工作(黄典豪等,1994;李永峰等,2003,2006;叶会寿等,2006;朱赖民等,2008;Mao et al.,2008,2010,2011;戴宝章等,2009;Bao et al.,2014;Xie et al.,2015,2017;Hu et al.,2020;Tang et al.,2021),并且依据锆石U-Pb年龄和岩石组合,将秦岭晚中生代花岗质岩浆作用划分为160~125 Ma和 125~110 Ma两个阶段(Zou et al.,2019)(图1b)。
区内矿产资源十分丰富,强烈、多期次的构造–岩浆活动为秦岭造山带提供了有利的成矿条件,以中新生代为主要成矿期,大量斑岩型钼矿床分布于商丹断裂以北的华熊地块,包括南泥湖、三道庄、上房沟、鱼库等9个超大型钼矿以及30余个大、中、小型钼矿(陈衍景等,2020)(图1b)。近年来,在商丹断裂以南柞水–山阳地区亦相继发现了众多与燕山中晚期中酸性花岗(斑)岩体密切相关,但矿化类型明显区别于商丹断裂以北的斑岩–矽卡岩型Mo、Mo-W矿床,主要以斑岩-矽卡岩型 Cu-Mo、Cu-Mo-Fe、Cu-Mo-Au-Fe 矿床(点)为主。
2. 矿集区地质特征
2.1 柞水-山阳矿集区
陕西省柞水–山阳矿集区位于秦岭造山带中的南秦岭(图1b),北以商丹断裂为界,紧邻北秦岭岛弧杂岩带;南以凤镇–山阳断裂为界,紧邻镇安–旬阳矿集区;西侧覆盖大面积三叠纪花岗岩基;东侧位于商丹断裂和凤镇–山阳断裂交汇处(闫臻等,2014)(图2)。
图 2 柞水–山阳矿集区地质简图(修改自Xie et al.,2017)Figure 2. Simplified geological map of the Zhashui-Shanyang ore cluster区内出露地层主要为泥盆世刘岭群,包括上泥盆统桐峪寺组和下东沟组、中泥盆统牛耳川组、池沟组和青石亚组,为一套滨浅海相–三角洲相沉积组合(刘凯等,2020)(图2);南侧主要出露石炭系和中上泥盆统,属深海相–浅海相沉积组合(陈雷等,2014b;Chen et al.,2023)。泥盆系为矿集区寻找多金属矿床的主要建造。区内断裂构造发育,以山阳–凤镇大断裂为界,划分出北部礼县–柞水华力西褶皱带和南部南秦岭印支褶皱带两个二级大地构造单元,近EW向褶皱和断裂构成区内构造基本格架,主要有双元沟–土地沟–池沟、穆家庄–黑沟、张家坪–袁家沟–小河口–元子街–桐木沟、红岩寺–砚池河–黑山等断裂(闫臻等,2014)(图2)。这些断裂构造与区内发育的其他NE、NNE、NW向断裂控制该区沉积特征、岩浆岩侵位和相关矿床的分布。区内印支期和燕山期花岗质岩浆活动强烈。印支期花岗岩体主要有东江口、柞水、曹坪和沙河湾岩体(图2),岩体内部和外围多有金、钼、铜、铅锌等金属矿床或矿点分布(郑俊等,2015)。燕山期花岗岩体主要为浅成–超浅成的中酸性小岩体,包括白沙沟、双元沟、土地沟、下官坊、小河口、元子街、池沟和冷水沟岩体,出露面积一般小于0.12 km2,呈岩枝、岩株、岩筒出现(陈雷等,2014b;Xie et al.,2015;郑俊等,2015)。
在上述岩体内部及外围,形成一系列矿床和矿点,代表性的矿床有池沟Cu-Mo矿床、冷水沟Cu-Mo矿床、双元沟Cu矿床、小河口Cu矿床等(王瑞廷等,2023)。这些矿床的矿化类型以矽卡岩型矿化为主,少量斑岩型矿化,成矿元素以Cu为主,伴生有Mo、Fe、Au等元素。成矿岩体岩性多为花岗闪长岩、石英二长斑岩和石英闪长斑岩(图3a),普遍具有高K钙碱性、准铝质(少部分过铝质)(图3b~图3d)的特征。岩体和围岩蚀变主要有角岩化、矽卡岩化、硅化、钾化、绢英岩化、绿泥石化和黏土化。矿石矿物主要有黄铜矿、黄铁矿、辉钼矿、磁铁矿、黝铜矿、斑铜矿、镜铁矿和辉铜矿;脉石矿物主要有石榴子石、透辉石、透闪石、阳起石、符山石、绿帘石、绿泥石、方解石、长石、绢云母和石英等。前人研究表明这些斑岩和矽卡岩型的Cu、Mo矿床具有统一的矽卡岩-斑岩型成矿系统,形成时间集中于152~140 Ma(图4a),有关各个矿床详细成矿特征见(表1)。
图 3 柞水–山阳矿集区和栾川矿集区成矿岩体TAS岩石分类图解(a)、SiO2-K2O岩石系列判别图解(b)、A/CNK-A/NK铝饱和指数判别图解(c)和AR- SiO2碱度率判别图解(d)(底图分别据Wright,1969;Peccerillo et al.,1976;Maniar et al.,1989;Middlemost,1994)柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)Figure 3. (a) TAS, (b) SiO2-K2O, (c) A/CNK-A/NK and (d) AR- SiO2 diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan表 1 柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿床成矿特征简表Table 1. Summary of characteristics of porphyry-skarn Cu-Mo deposits in Zhashui-Shanyang area矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 岩体蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 池沟/矽卡岩型Cu,伴生Mo Cu:64 Mt/0.22% 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、二长花岗岩、花岗闪长斑岩 矽卡岩化、钾化、绢云母化、角岩化、硅化、 黄铁矿、黄铜矿、辉钼矿、褐铁矿、闪锌矿、方铅矿 钾长石、斜长石、绢云母、透辉石、绿帘石、绿泥石、沸石、方解石 148.1~146.5
Molybdenite Re-Os任涛等,2014;Zhang et al.,2021 下官坊/矽卡岩型Cu,伴生Fe – 二峪河组变石英砂岩、板岩、粉砂岩 花岗闪长斑岩、闪长岩、花岗斑岩 钾化、硅化、绿泥石化、绢云母化 磁铁矿、磁黄铁矿、黄铁矿、赤铁矿、黄铜矿、辉铜矿、辉铜矿、辉钼矿、褐铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、石英、方解石 142.8~142.7
Zircon U-Pb吴发富,2013;Chen et al.,2023 元子街矽卡岩型Cu,伴生Fe-Au - 二峪河组变石英砂岩、板岩、粉砂岩 石英闪长斑岩、花岗闪长斑岩 绢云母化、绿泥石化、硅化、黏土化 磁铁矿、黄铜矿、白铁矿、磁黄铁矿、黄铁矿、赤铁矿、褐铁矿 透辉石、石榴子石、绿帘石、绿泥石、阳起石、石英、方解石 142.3~142.1
Zircon U-Pb吴发富,2013;Chen et al.,2023 小河口/矽卡岩型Cu Cu:>0.05 Mt 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 花岗闪长斑岩、
花岗斑岩钾化、硅化、绢云母化、黏土化、绿泥石化 黄铜矿、黄铁矿、磁黄铁矿、磁铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、方解石、石英 150.2~149.6
Zircon U-Pb吴发富,2013;Chen et al.,2023 袁家沟/矽卡岩型Cu – 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、泥化、硅化 黄铁矿、辉钼矿、褐铁矿、黄铜矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 双元沟/斑岩型Cu Cu:0.079 Mt/
0.51%~2.34%池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、硅化、绿泥石化、绢云母化、黏土化 黄铜矿、黄铁矿、辉铜矿、黝铜矿、磁铁矿、褐铁矿 钾长石、绿泥石、石英、方解石、石榴子石、透辉石 151~144
Zircon U-PbXie et al.,2015;Chen et al.,2023 土地沟/斑岩型Cu-Mo – 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、绢云母化、碳酸盐化、高岭土化 黄铁矿、黄铜矿、辉钼矿 石榴子石、透辉石、绿泥石、钾长石、石英、方解石、 150~148
Molybdenite Re-OsZhang et al.,2023 冷水沟/矽卡岩Cu,斑岩型Cu-Mo Cu:44 Mt/0.25 % 云镇组千枚岩、石英砂岩;龙洞沟组大理岩、灰岩、千枚岩 花岗闪长斑岩、
石英闪长岩、花岗斑岩钾化、硅化、绢云母化、绿泥石化、高岭土化 黄铜矿、黄铁矿、辉钼矿、辉铜矿、黝铜矿、褐铁矿 石榴子石、透辉石、绿帘石、绿泥石、透闪石、石英、方解石 150.0~145.6
Molybdenite Re-OsXie et al.,2017 注:“–”表示无数据来源。 2.2 栾川矿集区
河南栾川钼钨铅锌银多金属矿集区位于秦岭造山带中的东秦岭中部,地处华北板块南缘和北秦岭的拼合部位(薛飞,2017)(图1b),向北以马超营断裂为界,靠熊耳山隆断区;南抵栾川断裂,紧邻北秦岭次级构造单元;西为卢氏–洛宁凹陷,东为伏牛山台缘隆褶区(燕长海等,2009;唐利等,2014)(图5)。
图 5 栾川矿集区地质简图(据Guo et al.,2020修改)Figure 5. Simplified geological map of the Luanchuan ore ore cluster栾川矿集区出露地层主要有:太古宙太华群变质结晶基底,为一套片麻岩和片岩组合;中元古界官道口群,为一套浅海碳酸盐岩–陆源碎屑沉积建造;新元古界栾川群,为一套陆源碎屑–碳酸盐岩–粗面质火山岩夹基性火山岩建造,自下而上分为三川组、南泥湖组、煤窑沟组、大红口组和鱼库组;下古生界陶湾群,为一套陆源碎屑–浅海相泥质碳酸盐岩建造(图5)。栾川群和官道口群是研究区最为重要的赋矿地层(唐利等,2014;Guo et al.,2020)。栾川矿集区内发育多条断裂。区域构造格架主要受华北克拉通与扬子克拉通在三叠纪陆–陆碰撞形成的NWW向大断裂(如南部的栾川断裂和北部的马超营断裂)控制(张国伟等,1995),北北东向断裂呈断续状延伸叠加在其上,共同限制区内岩体和矿体的分布(唐利等,2014)(图5)。区内岩浆活动强烈,主要发育了燕山期花岗岩,形成规模较大的花岗岩岩基和较小的花岗斑岩体(如南泥湖、上房沟、鱼库等),且受上述断裂影响,主要产于NW向和NNE向断裂的交汇部位(韩江伟等,2015)(图5)。
栾川矿集区在500 km2的面积内含有大于2.47 Mt的Mo金属资源量(Li et al.,2015),分布有超大型斑岩–矽卡岩型Mo-W矿:南泥湖-三道庄、东鱼库、上房沟;大-中型斑岩–矽卡岩Mo-W矿:石宝沟、榆木沟、火神庙、马圈等。这些以Mo矿化为主矿床的形成与晚侏罗世—早白垩世小花岗斑岩体密切相关,受NWW和NNE向断裂控制,分布于二者交汇部位,矿体直接产于斑岩体内部或接触带上,呈层状、似层状、透镜状。成矿岩体岩性主要为二长花岗岩、黑云二长花岗岩以及花岗斑岩(图3a),化学成分上表现为高硅、高钾钙碱性-钾玄岩系列、准铝质特征(图3b~图3d)。围岩蚀变主要有矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化等。矿集区内斑岩–矽卡岩型Mo-W矿化产于成矿系统中心部位,地球化学序列为一套高温–中温的矿物组合。矿石金属矿物主要有黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿等。脉石矿物主要有钾长石、斜长石、绢云母、透辉石、绿帘石、绿泥石、沸石、方解石、石榴子石和阳起石等。前人测年结果表明,其中心成矿带Mo-W矿化主要集中在148~141 Ma(图4b),有关各个矿床详细成矿特征见表2。
表 2 栾川矿集区斑岩–矽卡岩型Mo-W矿床成矿特征简表Table 2. Summary of characteristics of porphyry-skarn Mo-W deposits in Luanchuan area矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 南泥湖/斑岩–矽卡岩Mo-W Mo:1.24 Mt/0.079%~0.143%;WO3:0.64 Mt 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、石英、钾长石、黑云母、方解石、萤石、绿泥石、沸石 145.8~143.9
Molybdenite Re-OsLi et al.,2004;向君峰等,2012 三道庄/斑岩–矽卡岩Mo-W Mo:0.75 Mt/0.109%;WO3:0.55 Mt/0.112% 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 石榴子石、透辉石、阳起石、绿帘石、石英、黑云母、方解石、绿泥石、沸石 146.5~143.5
Molybdenite Re-OsMao et al.,2008;向君峰等,2012 上房沟/斑岩–矽卡岩Mo-W Mo:0.72 Mt/0.134% 栾川群碳硅泥岩系 花岗斑岩、黑云母二长花岗岩 矽卡岩化、硅化、绢云母化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、闪锌矿、白钨矿、磁黄铁矿 透辉石、透闪石、阳起石、金云母、蛇纹石、滑石、绿泥石、石英、方解石、钾长石 144.8~141.8
Molybdenite Re-OsLi et al.,2004;Mao et al.,2008 东鱼库/斑岩–矽卡岩Mo-W Mo:1.5 Mt/0.055%~0.186%;WO3:0.3 Mt/0.06%~0.13% 栾川群碳硅泥岩系 花岗斑岩、石英二长斑岩 硅化、绢云母化、矽卡岩化、钾化、绿泥石化 辉钼矿、白钨矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿 钾长石、石英、透辉石、石榴子石、绢云母、萤石、电气石 147.1~145.9
Molybdenite Re-OsLi et al.,2015 石宝沟/斑岩-矽卡岩Mo-W Mo:0.2 Mt/0.05%~0.1%, WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 花岗斑岩、二长花岗岩 钾化、硅化、矽卡岩化、碳酸盐化、绢云母化 辉钼矿、黄铁矿、白钨矿、磁黄铁矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 榆木沟/斑岩–矽卡岩Mo-W Mo:0.14 Mt/0.05%~0.1%; WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 斑状二长花岗岩和黑云母二长花岗岩 钾化、硅化、碳酸盐化 辉钼矿、白钨矿、闪锌矿、方铅矿、黄铁矿 钾长石、斜长石、石英、绿泥石、绿帘石 147.7~147.2
Molybdenite Re-OsQian et al.,2022;Yang et al.,2022 大坪/斑岩–矽卡岩Mo-W - 栾川群碳硅泥岩系 二长花岗斑岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、透辉石、斜长石 141.2±0.5
Zircon U-Pb张云辉,2014 火神庙/ 矽卡岩Mo-W Mo:0.053 Mt/0.11% 栾川群碳硅泥岩系 花岗斑岩、石英闪长岩 矽卡岩化、钾化、硅化、绢云母化 辉钼矿、黄铁矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿 透辉石、透闪石、石英、钾长石、黑云母、方解石、绿帘石 148.1~146.1
Molybdenite Re-Os王赛等,2014 马圈/斑岩–矽卡岩Mo-W Mo:0.01 Mt/0.109% 官道口群白云石大理岩 花岗斑岩 矽卡岩化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、辉钼矿、磁黄铁矿、方铅矿、闪锌矿、黄铜矿、白钨矿 透辉石、石榴子石、斜长石、方解石、石英 141.8±2.1
Molybdenite Re-Os李诺等,2007 3. 讨论
3.1 岩浆源区
岩浆源区的性质对斑岩型矿床的形成起到关键控制作用,如壳幔组分差异控制成矿元素的富集、受流体交代程度影响矿化类型、源区金属预富集可以有效提高成矿潜力、源区岩浆的全碱含量制约矿化元素地球化学行为等方面(Lu et al.,2013;Hou et al.,2015a;Zheng,2019; 杨航等,2023)。全岩εNd(t) 和TDM2被用于区分岩浆源区和地壳源岩形成年龄(侯增谦等,2018),锆石εHf(t)值可以区分新生地壳(高正εHf(t))和古老陆壳(负εHf(t))(Kemp et al.,2006),Hf模式年龄可以限定岩浆源区从亏损地幔分离抽取的大致年龄(Griffin et al.,2002)。因此全岩Sr-Nd同位素和锆石Lu-Hf同位素体系是示踪岩石源区特征的有效手段。
柞水–山阳矿集区内150~140 Ma Cu-Mo矿床Hf-Nd-Sr同位素在整体上显示出以下相似特征:εHf(t)值为−5~2,收集的样品数据既有正值,又有负值,平均值为−0.86(图6a),εNd(t)值为−6.6~−1.5(图6c),说明成矿岩体具有壳幔混源的特征,且以新生下地壳物质为主,Hf同位素组成变化范围不大,εHf(t)值围绕球粒陨石线上下波动,指示其混熔程度较高,使得壳源和幔源岩浆的Hf同位素组成趋于均一化。较低的(87Sr/86Sr)i值(平均值为0.705)接近于上地幔(87Sr/86Sr)i初始比值为0.702~0.706(任涛等,2014)(图6d),进一步说明有幔源物质的加入。由此可见,柞水–山阳矿集区内晚侏罗世—早白垩世Cu-Mo矿床为同期同源岩浆演化的产物,岩浆源区以新生下地壳重熔为主,混合了基性幔源物质,并且混熔程度较高。
图 6 柞水–山阳矿集区和栾川矿集区εHf(t)–年龄图解(a)、TDM2(Hf)分布直方图(b)、εNd(t)–年龄d图解(c)和(87Sr/86Sr)i-εNd(t)图解(d)(d底图据Xie et al.,2017)柞水–山阳矿集区Cu-Mo矿床全岩Sr-Nd数据引自Xie等(2015)、Luo等(2020),锆石Lu-Hf数据引自吴发富(2013)、吴发富等(2014)、Xiong等(2019)、Luo等(2020)、Zhang等( 2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩Sr-Nd数据引自Bao等(2014)、Wang等(2018)、Zhan等(2021),锆石Lu-Hf数据引自杨阳等(2012)、Bao等(2014)、Li等(2015)、王赛等(2016)、Xue等(2018)、 Zhang等(2018)、 Guo等(2020)、Zhang等(2021)、Qian等(2022)Figure 6. (a) εHf (t)–age, (b) histogram of zircon Hf TDM2, (c) εHf (t)–age and (d) (87Sr/86Sr)i–εNd (t) diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan前人研究表明,古秦岭洋在三叠纪的闭合诱发华北板块和扬子板块碰撞,并于晚三叠世进入全面碰撞隆升阶段(王宗起等,2009;闫臻等,2014),直至晚侏罗世—早白垩世进入造山晚期和后碰撞环境。在Y-Nb和(Y+Nb)-Rb构造判别图解中(图7),大多数投点落于后碰撞花岗岩以及火山弧花岗岩与后碰撞花岗岩的过渡区域,指示柞水–山阳矿集区内150~140 Ma斑岩–矽卡岩型Cu-Mo矿床正是这一构造环境下的产物。不同学者对柞水–山阳矿集区内这一期部分或少数Cu-Mo矿床的岩浆源区用不同的方法进行过一定研究,如成矿斑岩体岩石学岩相学和岩石地球化学特征(吴发富等,2014);黑云母和角闪石单矿物的化学成分特征以及辉钼矿中Re含量(谢桂青等,2012);同位素特征(硫同位素、全岩Sr-Nd同位素、锆石Lu-Hf同位素)(谢桂青等,2012;吴发富等,2014;Xie et al.,2015,2017;Xiong et al.,2019;Chen et al., 2023),均认为其源区是下地壳部分熔融的岩浆和深部岩石圈地幔或上地幔岩石圈物质熔融岩浆发生不同程度的混合所形成。而对于后碰撞环境下的斑岩型Cu矿床,成矿岩浆主要起源于加厚的镁铁质新生下地壳或拆沉的古老下地壳部分熔融(Hou et al.,2015b;Wang et al.,2018;侯增谦等,2020)。
图 7 柞水–山阳矿集区和栾川矿集区成矿岩体Y-Nb(a)和(Y+Nb)-Rb(b)构造环境判别图解(底图据Pearce et al.,1984)柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)Figure 7. (a) Y-Nb and (b) (Y+Nb)-Rb diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan栾川矿集区斑岩型Mo-W矿床显示出明显更负的εHf(t)和εNd(t)值(平均值分别为–18.38和–14.63),且变化范围较大(图6a、图6c),具有下地壳源区特征。锆石Hf二阶段模式年龄为1628~3387 Ma,多数为2.1~2.8 Ga(图6b),与太华群结晶基底2.1~3.0 Ga(Li et al.,2015)和扬子陆壳1.8~2.2 Ga(Bao et al.,2014)形成时间相当,且多数与太华群基底形成时间相吻合。此外,(87Sr/86Sr)i值(平均值为0.712)接近于扬子上地壳(图6d)。对于斑岩型Mo矿床而言,其岩浆源区通常被认为与高Mo丰度的古老大陆地壳和富Mo的陆缘沉积物俯冲有关(孙卫东等,2015;侯增谦等,2020)。如东太平洋白垩纪富Mo沉积物比西太平洋更发育,且北美的科迪勒拉钼矿带发育古老的前寒武纪基底,造成环东太平洋斑岩型Mo矿床数量远多于环西太平洋 (孙卫东等,2015)。秦岭地区华北克拉通南缘集中了区内95%以上的Mo资源,该地区以古老的前寒武纪克拉通基底发育为典型特征,且太华群基底和熊耳群较秦岭造山带其他上覆盖层具有更高的钼元素含量(分别为2.62×10–6和3.76×10–6)(陈衍景等,2020)。诸多学者认为太华群和熊耳群是重要的岩浆源区(Li et al.,2015;Li et al.,2018;陈衍景等,2020)。但也有观点认为其源区可能与扬子板块俯冲富Mo陆壳沉积物有关(Bao et al.,2014)。而本次研究指示,古老的富Mo太华群基底和扬子陆壳沉积物共同为栾川矿集区内晚侏罗世—早白垩世Mo-W矿床提供岩浆来源,前者为其提供了主要的物质来源,在成矿岩体中发现的大量中元古代至太古代继承锆石(1700~2700 Ma)亦证明了此观点(Li et al.,2018)。
3.2 水含量和氧逸度
斑岩型成矿岩浆普遍具有高水含量(>4%)和高氧逸度(△FMQ>1.5,上限为HM缓冲剂)(Richards,2003;Richards,2011;Wang et al.,2014a,2014b;Sun et al.,2015)。岩浆中水含量的多少可以决定岩浆流体的饱和及出溶等,因而成为控制斑岩成矿的关键因素(Lu et al.,2015;Williamson et al.,2016;王瑞等,2021)。岩浆系统中的氧逸度主要控制S在岩浆中的存在形式,从而影响Cu、Au等成矿金属的地球化学行为,进而控制其成矿(Jugo,2009;侯增谦等,2020)。
前人对于岩浆水含量的测算方法有多种,如花岗岩地质湿度计、高温高压熔融实验、岩石学模拟计算、SIMS锆石水含量测定等(Naney,1983;Lu et al.,2015;Chiaradia,2020)。此外,当岩浆中水含量较高时(H2O>4%),一方面可以促进角闪石的结晶分异,另一方面会抑制斜长石的结晶分异,而由于角闪石具有较高的重稀土元素(HREE)分配系数,斜长石具有较高的Eu分配系数,以角闪石为主要分离结晶相的富水岩浆往往表现出全岩Y 值下降,Sr/Y值上升,稀土配分呈铲状模式,但Eu不会呈现明显负异常的特征(Richards,2011;Loucks,2014;Wang et al.,2014b;王瑞等,2021)。因此岩石地球化学特征与结晶分异作用也被广泛地用于估算岩浆水含量。
柞水–山阳和栾川两个矿集区整体均显示高Sr(含量分别为108×10–6~1475×10–6和25×10–6~1070×10–6;均值分别为908×10–6和366×10–6)和低Y(含量分别为5.64×10–6~28.89×10–6和3.37×10–6~31.7×10–6;均值分别为16.1 ×10–6和11.1 ×10–6)的特征(图8a、图8b),表明原始岩浆早期以角闪石的分离结晶作用为主,角闪石在岩浆系统中稳定存在,需要较高的水含量(H2O>4%;Naney,1983;Ridolfi et al.,2010)。较低的锆饱和温度(柞水–山阳和栾川矿集区成矿温度范围分别为670~856 ℃和696~821 ℃,均值分别为758 ℃和764 ℃)、高全岩EuN/EuN*值(柞水–山阳和栾川矿集区其值分别为0.72~1.58和0.34~1.20,平均值分别为1.00和0.83)和铲状稀土元素球粒陨石标准化配分曲线(图8c、图8d、图9a、图9c)均表明二者的成矿岩浆具有较高的水含量(至少>4%)。岩浆因富水而导致角闪石分离堆晶并抑制斜长石分离结晶使成铜斑岩普遍缺失负Eu异常,反之成钼斑岩体岩浆较低的水含量不能抑制斜长石的分离结晶会使斑岩出现MREE亏损和显著负Eu异常特征(Sisson et al.,1993;Berndt et al.,2005;Hou et al.,2015d;侯增谦等,2020)。本次研究中,相比于柞水–山阳矿集区斑岩型Cu-W矿床,栾川矿集区斑岩型Mo-W矿床表现出随着SiO2含量的增加(至>70%),EuN/EuN*值也有所降低(图8d),且稀土元素球粒陨石标准化配分曲线和微量元素原始地幔标准化蛛网图中栾川矿集区斑岩型Mo-W矿呈现Eu负异常趋势(图9b、图9d)。此外,栾川矿集区成矿岩体中明显更低的Sr含量和略高的锆饱和温度均暗示,在岩浆演化后期,水含量略微有所降低而不能抑制斜长石的分离结晶。以上分析表明,虽然栾川矿集区成矿母岩浆水含量有略微降低的趋势,但总体来说,柞水-山阳和栾川两个矿集区成矿母岩浆水含量均比较高,岩浆水含量对于其矿化差异的控制作用并不显著。
图 8 柞水–山阳矿集区和栾川矿集区成矿岩体的成矿年龄-Sr图解(a)、SiO2-Y图解(b)、成矿年龄-锆饱和温度图解(c)和SiO2-全岩EuN/EuN*图解图解(d)柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)Figure 8. (a) Age-Sr, (b) SiO2-Y, (c) Age-zircon saturation temperature and (d) SiO2-whole rock EuN/EuN*diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan图 9 柞水–山阳矿集区和栾川矿集区稀土元素球粒陨石标准化配分图(a、b)和微量元素原始地幔标准化蛛网图(c、d)(球粒陨石和原始地幔标准化值据Sun et al.,1989)柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)Figure 9. (a, b) Chondrite normalized REE and (c, d) primitive mantle-normalized trace elements diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan岩石中的氧逸度是通过对氧化还原敏感的变价元素来确定的,有直接测定法和间接测定法。目前,在斑岩型矿床的研究中,通过岩浆体系中元素的行为来确定氧逸度的间接估算法更常用,如根据Fe-Ti 氧化物组合、全岩 Fe3+/ΣFe 值、角闪石主量元素、锆石中的 Ce4+/Ce3+、 EuN/EuN*、 CeN/CeN*、全岩 V/Sc等(Buddington et al.,1964;Kress et al.,1991;Ballard et al.,2002;Trail et al.,2012;Loucks et al.,2020)。栾川矿集区锆石微量元素的数据较少,且已有测试中缺乏Ti等元素,不能直接利用锆石Ce异常和锆Ti温度计计算绝对氧逸度。此外,由于锆石中La和Pr的含量极低,接近或低于 LA-ICP-MS 方法的检测限,因此很难对锆石Ce4+/Ce3+氧逸度进行可靠的计算。一些学者发现,利用CeN/CeN*、Ce/Nd、EuN/EuN*值,亦可以作为判断岩浆相对氧逸度的有效指标(Munoz et al.,2012;Chelle-Michou et al.,2014;Zhang et al.,2017)。故文中采用CeN/CeN*、Ce/Nd、EuN/EuN*值,以及全岩的Fe2O3/FeO、V/Sc值间接指示成矿斑岩体氧逸度大小(其中,
$ {\mathrm{C}\mathrm{e}}_{\mathrm{N}}^{\mathrm{*}}={\mathrm{N}\mathrm{d}}^{2}/{\mathrm{S}\mathrm{m}}_{\mathrm{N}} $ ;$ {\mathrm{E}\mathrm{u}}_{\mathrm{N}}^{\mathrm{*}}=\sqrt{{\mathrm{S}\mathrm{m}}_{\mathrm{N}}\times {\mathrm{G}\mathrm{d}}_{\mathrm{N}}} $ )(Trail et al.,2012;Loader et al.,2017)。结果显示,柞水–山阳矿集区Cu-Mo矿床和栾川矿集区Mo-W矿床均具有高成矿氧逸度的特征(图10a~图10d)。在Fe2O3/FeO-SiO2图解中,由于栾川矿集区Mo-W成矿岩体分异程度较高,二者的分布区间有所差异,但都位于磁铁矿系列区域(图10a);在Fe2O3/FeO-Rb/Sr图解中,两矿集区成矿岩体的氧化还原状态整体都位于FMQ~Hem-Mag区间内,且大部分点在代表FMQ+3之上(粗黑线表示)(图10b);二者均具有高锆石EuN/EuN* (>0.3;柞水–山阳和栾川矿集区分别为0.44~0.91和0.12~0.77,平均值分别为0.64和0.51)和全岩V/Sc值(>5;柞水–山阳和栾川矿集区分别为3.81~12.51和1.04~15.69,平均值分别为9.47和7.17)(图10c),以及高锆石CeN/CeN*(柞水–山阳和栾川矿集区分别为1.28~2554和3.67~638.8,平均值分别为196.7和180.2)(图10d)和Ce/Nd(柞水–山阳和栾川矿集区分别为2.69~115.71和1.80~89.96,平均值分别为29.51和39.06)特征。这些特征与前人在研究不同规模的斑岩型矿床中发现的规律一致,即一些大型-超大型的Cu和Mo矿床,代表成矿氧逸度的部分指标具有以下特征:V/Sc>5、锆石EuN/EuN*>0.3、锆石CeN/CeN*>100、Ce/Nd>10,而一些较小规模或不成矿岩体的值则明显低于上述值(Shu et al.,2019;Wu et al.,2021)。值得注意的是,相比于柞水–山阳矿集区斑岩型Cu-W矿床,栾川矿集区斑岩型Mo-W矿床成矿岩体的各项氧逸度指标略微小于前者,尤其是锆石EuN/EuN*值,在图中二者虽有重叠部分,但整体差异比较明显(图10c、图10d)。柞水–山阳和栾川两个矿集区成矿母岩浆均具有较高的水含量,但后者随着岩浆演化程度增高,斜长石开始分离结晶,导致岩浆的EuN/EuN*明显降低(图8d),这可能是造成锆石中EuN/EuN*值降低的直接原因。虽然有学者提出,富水岩浆会使初始埃达克岩分离结晶Fe3+/FeT低的矿物,如角闪石,导致岩浆具有更高的氧逸度(Wang et al.,2014a;Ulmer et al.,2018),然而文中栾川矿集区斑岩型Mo-W矿床成矿岩体随着岩浆演化程度增高,水含量略有下降,是否代表氧逸度也出现下降,还需要更多的证据。
图 10 柞水–山阳矿集区和栾川矿集区成矿岩体的SiO2- Fe2O3/FeO图解(a)、Rb/Sr- Fe2O3/FeO图解(b)、全岩V/Sc-锆石EuN/EuN*图解(c)和锆石CeN/CeN*-EuN/EuN*图解(d) (b底图据Hart et al.,2004)柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);柞水–山阳矿集区Cu-Mo矿床锆石微量元素数据引自 Luo等(2020)、Zhang等( 2021)、Chen等(2023); 栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020);栾川矿集区Mo-W矿床锆石微量元素数据引自Li等(2015)、Xue等(2018)、Qian等(2022)Figure 10. (a) SiO2- Fe2O3/FeO, (b) Rb/Sr- Fe2O3/FeO, (c) whole-rock V/Sc- zircon EuN/EuN* and (d) zircon CeN/CeN* - zircon EuN/EuN* diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan以上分析表明,柞水–山阳矿集区Cu-Mo矿床和栾川矿集区Mo-W矿床都具有高的成矿岩浆水含量和氧逸度,可见较高的岩浆水含量和氧逸度是形成斑岩型矿化的先决条件。在本次研究中,对于两个矿集区矿化差异的控制作用表现并不明显。虽然,栾川矿集区Mo-W矿床岩浆演化程度更高,水含量有下降趋势,最近也有学者提出幔源物质的加入可以为成矿岩浆提供更多的水(Xu et al.,2023;Chen et al.,2023),柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿床的成矿母岩浆有更多幔源物质的加入,而栾川矿集区斑岩-矽卡岩型Mo-W矿床含有更多壳源物质,前者因混熔了更多基性幔源物质,成矿母岩浆可能更富水,造成岩浆优先分离结晶角闪石,抑制斜长石的分离结晶,综合前一章节的讨论,二者的矿化差异,究其根本是岩浆源区的不同,岩浆水含量和氧逸度并不是首要原因。
3.3 F、Cl、S含量
S和卤素(F、Cl)不仅可以作为岩浆的重要组成部分,直接或间接地影响到岩浆性质和岩浆作用过程,而且制约着元素在熔体/流体相中的分配,以及在流体中的地球化学行为和成矿效应(Berry et al.,2009;Koleszar et al.,2009)。磷灰石是花岗质岩石中普遍存在的副矿物,具有较强的稳定性,在变质作用与热液蚀变过程中成分保持稳定,能有效地记录母岩浆和热液中的S、H2O、卤素和微量元素(Ayers et al.,1991;Ayers et al.,1993;Chelle-Michou et al.,2017;陈雷等,2017;Andersson et al.,2019)。
两矿集区磷灰石中的Cl和F含量有如下特征:柞水–山阳矿集区斑岩Cu-Mo体系更富集Cl(图11a),而栾川矿集区斑岩Mo-W体系更富F(图11b)。前者磷灰石Cl含量为0.11%~1.14%,平均值为0.43%,F/Cl值相对较低,变化范围为1.28~26.02,平均值为9.24;后者磷灰石Cl含量为0.01%~1.05%,平均值为0.21%,F/Cl值相对较高,变化范围为1.62~377,平均值为113.12。
此外,文中基于磷灰石只含有12.5个O原子数(Ketcham,2015),通过计算F、Cl、OH的摩尔分数(XF、XCl、XOH)与磷灰石平衡的熔体中OH与Cl和F的交换系数Kd(McCubbin et al.,2015;Li et al.,2017;Riker et al.,2018)(设定柞水-山阳矿集区成矿岩体中磷灰石结晶温度为992 ℃;栾川矿集区成矿岩体中磷灰石结晶温度为950 ℃)(Du et al.,2019;Chen et al., 2023),利用熔体中挥发分 XF、XCl、XOH与其含量存在一定的比例关系(Kendall-Langley et al.,2021),计算出熔体中Cl和F的含量。结果显示:柞水–山阳矿集区Cu-Mo成矿熔体中Cl含量范围为0.021%~1.2%,平均值为0.23%,F含量范围为0.068%~3.44%,平均值为0.769;栾川矿集区Mo-W成矿熔体中Cl含量范围为0.005%~0.125%,平均值为0.04%,F含量范围为0.022%~6.009%,平均值为0.4%。二者成矿熔体中F/Cl平均值分别为3.96和4.47。通过以上计算可以发现,两矿集区花岗质岩浆中的磷灰石中Cl含量与熔体中Cl含量呈线性关系,熔体中Cl含量和F/Cl值表现出与磷灰石晶体中Cl含量和F/Cl值相似特征,即柞水–山阳矿集区斑岩Cu-Mo体系中均高于栾川矿集区斑岩Mo-W体系,二者磷灰石中F含量远高于熔体中F含量,说明可能在熔体演化过程中,F优先进入磷灰石晶体中,导致剩余熔体中F含量大幅降低。
Cl趋向富集于流体相(Webster et al.,2009),Cu在流体相中主要以氯合物形式存在(Gammons et al.,1997),故富Cl岩浆有利于Cu以氯合物的形式萃取和迁移(Grondahl et al.,2022)。F更容易进入熔体,同时能够降低岩浆的黏度、密度、固相线温度(Webster et al.,2009;陈雷等, 2017),并且通过促进熔体中水的溶解度升高,增强Mo的配分系数,从而对斑岩型Mo矿化具有重要作用(Keppler et al.,1991)。此外,较高的F/Cl值和Mn含量还可以指示岩浆源区中含有沉积物源区的特征(Boudreau et al.,1990;Cao et al.,2012)。栾川矿集区Mo-W矿的MnO含量高于山阳矿集区Cu-Mo矿(前者MnO含量变化范围为0.08%~0.62%,平均值为0.16%,后者变化范围0.01%~0.17%,平均值为0.07%)(图11c),说明山阳矿集区Cu-Mo矿床的岩浆源区具有更多的幔源组分,进一步证实岩浆源区对于两矿集区矿化差异的显著控制作用。
柞水–山阳矿集区Cu-Mo矿床和栾川矿集区Mo-W矿床的磷灰石样品都具有相似的SO3含量,平均值分别为0.20%和0.18%,高于利于成矿的SO3含量(0.1%)(Imai,2004)。利用Parat 等(2011)提出的磷灰石与熔体之间硫的表达式可以对熔体中SO3含量进行大致推算,文中计算了两矿集区磷灰石平衡的熔体中SO3含量,结果显示两矿集区成矿熔体中的SO3含量也具有相似特征,平均值分别为0.0124%和0.0120%。影响磷灰石SO3含量的主要因素是岩浆体系的硫逸度、氧逸度以及压力,岩浆体系中氧逸度越高,磷灰石SO3含量也增加(Imai,2002)。柞水–山阳矿集区斑岩型Cu-Mo矿的氧逸度略高,或许是造成其磷灰石SO3含量略微高于栾川矿集区斑岩型Mo-W矿的原因。但总的来说,二者相近的SO3含量表明,高的岩浆S含量是形成斑岩型矿化的一重要因素,但并不是造成两矿集区矿化差异的原因。
4. 结论
(1)柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿的岩浆源区主要为加厚的新生下地壳与幔源物质的部分熔融,而古老的富Mo太华群基底和扬子板块俯冲陆壳沉积物为栾川矿集区斑岩–矽卡岩型Mo-W矿床提供了主要的物质来源。岩浆源区的不同是造成两矿集区矿化差异的根本原因。
(2) 柞水–山阳矿集区Cu-Mo矿床和栾川矿集区Mo-W矿床都具有高的成矿岩浆水含量和氧逸度,后者岩浆演化程度更高,岩浆水含量略微有所降低,二者氧逸度差别不大。可见岩浆水含量和氧逸度均是形成斑岩型Cu-Mo和Mo-W矿床的重要条件,但并不是造成本次研究中两矿集区矿化差异的直接原因。
(3)挥发分Cl和F对矿化元素Cu和Mo的迁移具有明显选择性,并且分别有利于斑岩型Cu-Mo和Mo-W的矿化,因此两矿集区中Cl和F含量的差异亦是造成矿化类别不同的关键因素。而相近且都较高的SO3含量表明,S是形成斑岩型矿化的先决条件,但不是造成矿化差异的主要原因。
-
图 1 秦岭造山带构造格架图(a)(据Tang et al.,2022修)和秦岭Mo矿带斑岩–矽卡岩型Cu、Mo矿床分布图(b)(据朱赖民等,2019修)
Figure 1. (a) Tectonic framework of the Qinling Orogen and (b) porphyry-skarn Cu and Mo deposits distribution in Qinling Mo ore belt
图 2 柞水–山阳矿集区地质简图(修改自Xie et al.,2017)
Figure 2. Simplified geological map of the Zhashui-Shanyang ore cluster
图 3 柞水–山阳矿集区和栾川矿集区成矿岩体TAS岩石分类图解(a)、SiO2-K2O岩石系列判别图解(b)、A/CNK-A/NK铝饱和指数判别图解(c)和AR- SiO2碱度率判别图解(d)(底图分别据Wright,1969;Peccerillo et al.,1976;Maniar et al.,1989;Middlemost,1994)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 3. (a) TAS, (b) SiO2-K2O, (c) A/CNK-A/NK and (d) AR- SiO2 diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 5 栾川矿集区地质简图(据Guo et al.,2020修改)
Figure 5. Simplified geological map of the Luanchuan ore ore cluster
图 6 柞水–山阳矿集区和栾川矿集区εHf(t)–年龄图解(a)、TDM2(Hf)分布直方图(b)、εNd(t)–年龄d图解(c)和(87Sr/86Sr)i-εNd(t)图解(d)(d底图据Xie et al.,2017)
柞水–山阳矿集区Cu-Mo矿床全岩Sr-Nd数据引自Xie等(2015)、Luo等(2020),锆石Lu-Hf数据引自吴发富(2013)、吴发富等(2014)、Xiong等(2019)、Luo等(2020)、Zhang等( 2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩Sr-Nd数据引自Bao等(2014)、Wang等(2018)、Zhan等(2021),锆石Lu-Hf数据引自杨阳等(2012)、Bao等(2014)、Li等(2015)、王赛等(2016)、Xue等(2018)、 Zhang等(2018)、 Guo等(2020)、Zhang等(2021)、Qian等(2022)
Figure 6. (a) εHf (t)–age, (b) histogram of zircon Hf TDM2, (c) εHf (t)–age and (d) (87Sr/86Sr)i–εNd (t) diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 7 柞水–山阳矿集区和栾川矿集区成矿岩体Y-Nb(a)和(Y+Nb)-Rb(b)构造环境判别图解(底图据Pearce et al.,1984)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 7. (a) Y-Nb and (b) (Y+Nb)-Rb diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 8 柞水–山阳矿集区和栾川矿集区成矿岩体的成矿年龄-Sr图解(a)、SiO2-Y图解(b)、成矿年龄-锆饱和温度图解(c)和SiO2-全岩EuN/EuN*图解图解(d)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 8. (a) Age-Sr, (b) SiO2-Y, (c) Age-zircon saturation temperature and (d) SiO2-whole rock EuN/EuN*diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 9 柞水–山阳矿集区和栾川矿集区稀土元素球粒陨石标准化配分图(a、b)和微量元素原始地幔标准化蛛网图(c、d)(球粒陨石和原始地幔标准化值据Sun et al.,1989)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020)
Figure 9. (a, b) Chondrite normalized REE and (c, d) primitive mantle-normalized trace elements diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 10 柞水–山阳矿集区和栾川矿集区成矿岩体的SiO2- Fe2O3/FeO图解(a)、Rb/Sr- Fe2O3/FeO图解(b)、全岩V/Sc-锆石EuN/EuN*图解(c)和锆石CeN/CeN*-EuN/EuN*图解(d) (b底图据Hart et al.,2004)
柞水–山阳矿集区Cu-Mo矿床全岩主量元素数据引自吴发富(2013)、吴发富等(2014)、任涛等( 2014)、Xie等(2015,2017)、Xiong等(2019)、Luo等(2020)、Zhang等(2021)、Chen等(2023);柞水–山阳矿集区Cu-Mo矿床锆石微量元素数据引自 Luo等(2020)、Zhang等( 2021)、Chen等(2023); 栾川矿集区Mo-W矿床全岩主量数据引自Li等(2012)、Bao等(2014)、张云辉(2014)、韩江伟等(2015)、王赛等 (2016)、Xue等(2018)、 Zhang等(2018)、Yang等(2019)、Guo等(2020);栾川矿集区Mo-W矿床锆石微量元素数据引自Li等(2015)、Xue等(2018)、Qian等(2022)
Figure 10. (a) SiO2- Fe2O3/FeO, (b) Rb/Sr- Fe2O3/FeO, (c) whole-rock V/Sc- zircon EuN/EuN* and (d) zircon CeN/CeN* - zircon EuN/EuN* diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
图 11 柞水–山阳矿集区和栾川矿集区磷灰石中SO3-Cl(a)、SO3-F/Cl(b)和MnO-F/Cl(c)图解
柞水–山阳矿集区Cu-Mo矿床磷灰石成分数据引自Chen等(2023)、陈雷等(2014a, 2017);栾川矿集区Mo-W矿床磷灰石成分数据引自陈雷等(2017)、Du等(2019)
Figure 11. (a) Apatite SO3-Cl, (b) SO3-F/Cl and (c) MnO-F/Cl diagrams for the metallogenic rocks of the ore cluster in Zhashui-Shanyang and Luanchuan
表 1 柞水–山阳矿集区斑岩-矽卡岩型Cu-Mo矿床成矿特征简表
Table 1 Summary of characteristics of porphyry-skarn Cu-Mo deposits in Zhashui-Shanyang area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 岩体蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 池沟/矽卡岩型Cu,伴生Mo Cu:64 Mt/0.22% 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、二长花岗岩、花岗闪长斑岩 矽卡岩化、钾化、绢云母化、角岩化、硅化、 黄铁矿、黄铜矿、辉钼矿、褐铁矿、闪锌矿、方铅矿 钾长石、斜长石、绢云母、透辉石、绿帘石、绿泥石、沸石、方解石 148.1~146.5
Molybdenite Re-Os任涛等,2014;Zhang et al.,2021 下官坊/矽卡岩型Cu,伴生Fe – 二峪河组变石英砂岩、板岩、粉砂岩 花岗闪长斑岩、闪长岩、花岗斑岩 钾化、硅化、绿泥石化、绢云母化 磁铁矿、磁黄铁矿、黄铁矿、赤铁矿、黄铜矿、辉铜矿、辉铜矿、辉钼矿、褐铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、石英、方解石 142.8~142.7
Zircon U-Pb吴发富,2013;Chen et al.,2023 元子街矽卡岩型Cu,伴生Fe-Au - 二峪河组变石英砂岩、板岩、粉砂岩 石英闪长斑岩、花岗闪长斑岩 绢云母化、绿泥石化、硅化、黏土化 磁铁矿、黄铜矿、白铁矿、磁黄铁矿、黄铁矿、赤铁矿、褐铁矿 透辉石、石榴子石、绿帘石、绿泥石、阳起石、石英、方解石 142.3~142.1
Zircon U-Pb吴发富,2013;Chen et al.,2023 小河口/矽卡岩型Cu Cu:>0.05 Mt 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 花岗闪长斑岩、
花岗斑岩钾化、硅化、绢云母化、黏土化、绿泥石化 黄铜矿、黄铁矿、磁黄铁矿、磁铁矿 石榴子石、透辉石、阳起石、绿帘石、绿泥石、方解石、石英 150.2~149.6
Zircon U-Pb吴发富,2013;Chen et al.,2023 袁家沟/矽卡岩型Cu – 东沟组粉砂质板岩、泥质碳酸盐岩;桐峪寺组大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、泥化、硅化 黄铁矿、辉钼矿、褐铁矿、黄铜矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 双元沟/斑岩型Cu Cu:0.079 Mt/
0.51%~2.34%池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、硅化、绿泥石化、绢云母化、黏土化 黄铜矿、黄铁矿、辉铜矿、黝铜矿、磁铁矿、褐铁矿 钾长石、绿泥石、石英、方解石、石榴子石、透辉石 151~144
Zircon U-PbXie et al.,2015;Chen et al.,2023 土地沟/斑岩型Cu-Mo – 池沟组石英砂岩、粉砂质板岩、大理岩 石英闪长斑岩、花岗闪长斑岩 钾化、绢云母化、碳酸盐化、高岭土化 黄铁矿、黄铜矿、辉钼矿 石榴子石、透辉石、绿泥石、钾长石、石英、方解石、 150~148
Molybdenite Re-OsZhang et al.,2023 冷水沟/矽卡岩Cu,斑岩型Cu-Mo Cu:44 Mt/0.25 % 云镇组千枚岩、石英砂岩;龙洞沟组大理岩、灰岩、千枚岩 花岗闪长斑岩、
石英闪长岩、花岗斑岩钾化、硅化、绢云母化、绿泥石化、高岭土化 黄铜矿、黄铁矿、辉钼矿、辉铜矿、黝铜矿、褐铁矿 石榴子石、透辉石、绿帘石、绿泥石、透闪石、石英、方解石 150.0~145.6
Molybdenite Re-OsXie et al.,2017 注:“–”表示无数据来源。 表 2 栾川矿集区斑岩–矽卡岩型Mo-W矿床成矿特征简表
Table 2 Summary of characteristics of porphyry-skarn Mo-W deposits in Luanchuan area
矿床名称/
矿化类型金属储量/品位 赋矿围岩 岩体岩性 蚀变类型 矿石矿物 脉石矿物 成矿时间(Ma) 资料来源 南泥湖/斑岩–矽卡岩Mo-W Mo:1.24 Mt/0.079%~0.143%;WO3:0.64 Mt 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、石英、钾长石、黑云母、方解石、萤石、绿泥石、沸石 145.8~143.9
Molybdenite Re-OsLi et al.,2004;向君峰等,2012 三道庄/斑岩–矽卡岩Mo-W Mo:0.75 Mt/0.109%;WO3:0.55 Mt/0.112% 栾川群碳硅泥岩系 花岗斑岩、斑状二长花岗岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 石榴子石、透辉石、阳起石、绿帘石、石英、黑云母、方解石、绿泥石、沸石 146.5~143.5
Molybdenite Re-OsMao et al.,2008;向君峰等,2012 上房沟/斑岩–矽卡岩Mo-W Mo:0.72 Mt/0.134% 栾川群碳硅泥岩系 花岗斑岩、黑云母二长花岗岩 矽卡岩化、硅化、绢云母化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、闪锌矿、白钨矿、磁黄铁矿 透辉石、透闪石、阳起石、金云母、蛇纹石、滑石、绿泥石、石英、方解石、钾长石 144.8~141.8
Molybdenite Re-OsLi et al.,2004;Mao et al.,2008 东鱼库/斑岩–矽卡岩Mo-W Mo:1.5 Mt/0.055%~0.186%;WO3:0.3 Mt/0.06%~0.13% 栾川群碳硅泥岩系 花岗斑岩、石英二长斑岩 硅化、绢云母化、矽卡岩化、钾化、绿泥石化 辉钼矿、白钨矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿 钾长石、石英、透辉石、石榴子石、绢云母、萤石、电气石 147.1~145.9
Molybdenite Re-OsLi et al.,2015 石宝沟/斑岩-矽卡岩Mo-W Mo:0.2 Mt/0.05%~0.1%, WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 花岗斑岩、二长花岗岩 钾化、硅化、矽卡岩化、碳酸盐化、绢云母化 辉钼矿、黄铁矿、白钨矿、磁黄铁矿 石英、石榴子石、透辉石、钾长石、方解石、绿帘石 147.5~141.5
Molybdenite Re-OsMao et al.,2008 榆木沟/斑岩–矽卡岩Mo-W Mo:0.14 Mt/0.05%~0.1%; WO3:0.17 Mt/0.07%~0.18% 栾川群碳硅泥岩系 斑状二长花岗岩和黑云母二长花岗岩 钾化、硅化、碳酸盐化 辉钼矿、白钨矿、闪锌矿、方铅矿、黄铁矿 钾长石、斜长石、石英、绿泥石、绿帘石 147.7~147.2
Molybdenite Re-OsQian et al.,2022;Yang et al.,2022 大坪/斑岩–矽卡岩Mo-W - 栾川群碳硅泥岩系 二长花岗斑岩 矽卡岩化、钾化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、磁黄铁矿、辉钼矿、黄铜矿、方铅矿、闪锌矿、白钨矿 阳起石、绿帘石、透辉石、斜长石 141.2±0.5
Zircon U-Pb张云辉,2014 火神庙/ 矽卡岩Mo-W Mo:0.053 Mt/0.11% 栾川群碳硅泥岩系 花岗斑岩、石英闪长岩 矽卡岩化、钾化、硅化、绢云母化 辉钼矿、黄铁矿、磁黄铁矿、黄铜矿、方铅矿、闪锌矿 透辉石、透闪石、石英、钾长石、黑云母、方解石、绿帘石 148.1~146.1
Molybdenite Re-Os王赛等,2014 马圈/斑岩–矽卡岩Mo-W Mo:0.01 Mt/0.109% 官道口群白云石大理岩 花岗斑岩 矽卡岩化、硅化、绢云母化、绿泥石化、碳酸盐化 黄铁矿、辉钼矿、磁黄铁矿、方铅矿、闪锌矿、黄铜矿、白钨矿 透辉石、石榴子石、斜长石、方解石、石英 141.8±2.1
Molybdenite Re-Os李诺等,2007 -
陈建林, 许继峰, 任江波, 等. 俯冲型和碰撞型含矿斑岩地球化学组成的差异[J]. 岩石学报, 2011, 27: 2733-2742. CHEN Jianlin, XU Jifeng, REN Jiangbo, et al. Geochemical differences between the subduction-and collisional type ore-bearing porphyric rocks[J]. ACTA PETROLOGICA SINICA, 2011, 27: 2733-2742.
陈雷, 闫臻, 王宗起, 等. 陕西山阳-柞水矿集区燕山期岩体矿物学特征: 对岩浆性质及成矿作用的指示[J]. 地质学报, 2014a, 88: 109-133 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Mineralogical characteristic of the Yanshanian granitic rocks in Shanyang–Zhashui ore concentration area: an indicator for the magmatic nature and metallogenesis[J]. Acta Geol Sin, 2014a, 88: 109-133.
陈雷, 王宗起, 闫臻, 等. 秦岭山阳-柞水矿集区150~140Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报, 2014b, 30: 415-436 CHEN Lei, WANG Zongqi, YAN Zhen, et al. Metallogenesis of 150–140 Ma porphyry–skarn CuMoFe (Au) deposit in Shanyang–Zhashui ore concentration area, Qinling[J]. Acta Petrol Sin, 2014b, 30: 415-436.
陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)成矿作用的差异性: 来自成矿岩体的地球化学及其岩浆源区的证据[J]. 岩石学报, 2015, 31: 2383-2401 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Diversity of the 160–140Ma Cu (Mo) and Mo (W) mineralization in East Qinling: constraint on the geochemistry and magma source of the metallogenic rocks[J]. ACTA PETROLOGICA SINICA, 2015, 31: 2383-2401.
陈雷, 闫臻, 王宗起, 等. 东秦岭160~140Ma Cu(Mo)和Mo(W)矿床磷灰石成分特征[J]. 地质学报, 2017, 91: 1925-1941 CHEN Lei, YAN Zhen, WANG Zongqi, et al. Characteristics of apatite from 160–140 Ma Cu (Mo) and Mo (W) deposits in East Qinling[J]. Acta Geologica Sinica, 2017, 91: 1925-1941.
陈衍景, 李诺, 邓小华, 等. 秦岭造山带钼矿床成矿规律[M]. 北京: 科学出版社, 2020 CHEN Yanjing, LI Nuo, DENG Xiaohua, et al. Molybdenum Mineralization in Qinling Orogen[M]. Beijing: Science Press, 2020.
戴宝章, 蒋少涌, 王孝磊 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2009, 25: 2889-2901 DAI Baozhang, JIANG Shaoyong, WANG Xiaolei Petrogenesis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan Province, China: Constraints from petrogeochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes[J]. ACTA PETROLOGICA SINICA, 2009, 25: 2889-2901.
韩江伟, 郭波, 王宏卫, 等. 栾川西鱼库隐伏斑岩型Mo-W矿床地球化学及其意义[J]. 岩石学报, 2015, 31: 1789-1796 HAN Jiangwei, GUO Bo, WANG Hongwei, et al. Geochemistry of the Xiyuku large concealed porphyry Mo-W ore deposit, Luanchuan County[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1789-1796.
侯增谦, 王涛. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 2018, 25: 20-41. HOU Zengqian, WANG Tao. Isotopic mapping and deep material probing (Ⅱ): imaging crustal architecture and its control on mineral systems[J]. Earth Science Frontiers, 2018, 25: 20.
侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83: 1779-1817 HOU Zengqian, YANG Zhiming. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 2009, 83: 1779-1817.
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27: 20-44 HOU Zengqian, YANG Zhiming, WANG Rui, et al. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland[J]. Earth Science Frontiers, 2020, 27: 20-44.
黄典豪, 吴澄宇, 杜安道, 等. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J]. 矿床地质, 1994, 13(3): 221−230. HUANG Dianhao, WU Chengyu, DU Andao, et al. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 1994, 13(3): 313−322.
李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 05): 186-198 LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in east Qinling[J]. Earth Science Frontiers, 2007, (05): 186-198.
李永峰, 毛景文, 白凤军, 等. 东秦岭南泥湖钼(钨)矿田Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003: 652-659 doi: 10.3321/j.issn:0371-5736.2003.06.014 LI Yongfeng, MAO Jingwen, BAI Fengjun, et al. Re–Os isotopic dating of molybdenites in the Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance[J]. Geological Review, 2003, 49: 652-659. doi: 10.3321/j.issn:0371-5736.2003.06.014
李永峰, 毛景文, 刘敦一, 等. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义[J]. 地质论评, 2006: 122-131 LI Yongfeng, MAO Jingwen, LIU Dunyi, et al. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication[J]. Geological Review, 2006, 52: 122-131.
刘凯, 赵亮, 任涛, 等. 南秦岭柞水—山阳矿集区成矿特征及找矿方向[J]. 矿产勘查, 2020, 11: 849-857 LIU Kai, ZHAO Liang, REN Tao, et al. Analysis on metallogenic characteristics and prospecting direction of Zhashui-Shanyang ore cluster in South Qinling Mountains[J]. Mineral Exploration, 2020, 11: 849-857.
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1), 110−121 RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1), 110−121
任涛, 王瑞廷, 谢桂青, 等. 陕西池沟斑岩型铜矿床含矿岩体地球化学特征、成岩成矿时代及其意义[J]. 矿床地质, 2014, 33: 807-820 REN Tao, WANG Ruiting, XIE Guiqin, et al. Geochemistry and rock-forming and ore-forming epochs of Chigou Cu porphyry deposit in Shaanxi Province, and their implications[J]. Mineral Deposits, 2014, 33: 807-820.
孙卫东, 李聪颖, 凌明星, 等. 钼的地球化学性质与成矿[J]. 岩石学报, 2015, 31: 1807-1817 SUN Weidong, LI Congying, LING Mingxing, et al. The geochemical behavior of molybdnum and mineralization[J]. ACTA PETROLOGICA SINICA, 2015, 31: 1807-1817.
唐利, 张寿庭, 曹华文, 等. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征[J]. 成都理工大学学报(自然科学版), 2014, 41: 356-368. TANG Li, ZHANG Shouting, CAO Huawen, et al. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan[J]. China. J. Chengdu Univ. Technol.(Sci. Technol. Ed.), 2014, 41: 356-368
陶威, 郭岭, 李阳, 等. 南秦岭小寨沟银矿地质特征及其构造约束[J]. 西北地质, 2021 ,54(3): 108−120. TAO Wei, GUO Ling, LI Yang, et al. The Geological Characteristics and Structural Constraints of Xiaozhaigou Silver Deposit in South Qinling[J]. Northwestern Geology, 2021, 54(3): 108−120.
王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62. WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48−62.
王瑞, 罗晨皓, 夏文杰, 等. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展[J]. 矿物岩石地球化学通报, 2021, 40: 1061-1077 WANG Rui, LUO Chenhao, XIA Wenjie, et al. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40: 1061-1077.
王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50: 1919-1946. WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 63: 2042-2067.
王瑞廷, 刘凯, 冀月飞, 等. 陕西柞水-山阳金铜银多金属矿集区典型矿床模型和找矿预测. 地质通报, 2023, 42(6): 895−908. WANG Ruiting, LIU Kai, JI Yuefei, et al. Typical deposit model and prospecting prediction of the Zhashui-Shanyang Au-Cu-Ag polymetallic ore-concentration area, Shaanxi Province. Geological Bulletin of China, 2023, 42(6): 895−908.
王赛, 叶会寿, 杨永强, 等. 河南栾川火神庙钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 地质通报, 2014, 33: 1430-1438 WANG Sai, YE Huishou, YANG Yongqiang, et al. Molybdenite Re‐Os Isochron Age of the Huoshenmiao Mo Deposit in Luanchuan Henan Province and Its Geological Implications[J]. Geological Bulletin of China, 2014, 33: 1430-1438.
王赛, 叶会寿, 杨永强, 等. 豫西火神庙岩体锆石U-Pb年代学、地球化学及Hf同位素组成[J]. 地球科学, 2016, 41(2): 293−316. WANG Sai, YE Huishou, YANG Yongqiang, et al. Zircon U-Pb chronology, geochemistry and Hf isotopic compositions of the Huoshenmiao pluton, western Henan[J]. Earth Science, 2016, 41(2): 293−316.
王晓霞, 王涛, 齐秋菊, 等. 秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J]. 岩石学报, 2011, 27: 1573-1593 WANG Xiaoxia, WANG Tao, QI Qiuju, et al. Temporal-spatial variations, origin and their tectonic significance of the Late Mesozoic granites in the Qinling, Central China[J]. ACTA PETROLOGICA SINICA, 2011, 27: 1573-1593.
王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45: 1109-1125. WANG Xiaoxia, WANG Tao, ZHANG Chengli Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 2015, 58: 1497-1512.
王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83: 1527-1546 WANG Zongqi, YAN Quanren, YAN Zhen, et al. New division of the main tectonic units of the Qinling Orogenic Belt, Central China[J]. Acta Geologica Sinica, 2009, 83: 1527-1546.
吴发富, 王宗起, 闫臻, 等. 秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 岩石学报, 2014, 30: 451-471 WU Fafu, WANG Zongqi, YAN Zhen, et al. Geochemical characteristics, zircons U-Pb ages and Lu-Hf isotopic composition of the Yanshanian intermediate-acidic plutons in the Shanyang-Zhashui areas, Qinling Orogenic Belt[J]. ACTA PETROLOGICA SINICA, 2014, 30: 451-471.
吴发富. 中秦岭山阳—柞水地区岩浆岩及其成矿构造环境研究[D]. 北京:中国地质科学院, 2013. WU Fafu. Research on the magmatite and its metallogenic tectonic setting in the Shanyang-Zhashui area, Middle Qinling Orogenic Belt[D]. Beijing: Chinese Academy of Geological Sciences, 2013.
向君峰, 毛景文, 裴荣富, 等. 南泥湖—三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义[J]. 中国地质, 2012, 39: 458-473 XIANG Junfeng, MAO Jingwen, PEI Rongfu, et al. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo (W) deposit[J]. Geology in China, 2012, 39: 458-473.
谢桂青, 任涛, 李剑斌, 等. 陕西柞山盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J]. 岩石学报, 2012, 28: 15-26 XIE Guiqing, REN Tao, LI Jianbin, et al. Zircon U-Pb age and petrogenesis of ore-bearing granitoid for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province[J]. Acta Petrol Sin, 2012, 28: 15-26.
薛飞. 栾川矿集区花岗岩地质地球化学特征及其找矿指示意义[D]. 北京: 中国地质大学(北京), 2017 XUE Fei. Geology and Geochemistry of Granites in Luanchuan Ore District and Their Implications for Mineral Exploration[D]. Beijing: China University of Geosciences (Beijing), 2017.
闫臻, 王宗起, 陈雷, 等. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报, 2014, 30: 401-414 YAN Zhen, WANG Zongqi, CHEN Lei, et al. Tectono-magmatism and metallogeneses of Shanyang-Zhashui ore concentration area, Qinling Orogen[J]. ACTA PETROLOGICA SINICA, 2014, 30: 401-414.
燕长海, 刘国印, 彭翼, 等. 豫西南地区铅锌银成矿规律[M]. 北京: 地质出版社, 2009 YAN Changhai, LIU Guoyin, PENG Yi, et al. The Metallogenetical Characteristics of the Pb-Zn-Ag Deposits in Southwest Henan [M]. Beijing: Geological Publishing House, 2009.
杨航, 秦克章, 吴鹏, 等. 斑岩铜-钼-金矿床: 构造环境、成矿作用与控制因素[J]. 矿床地质, 2023, 42: 128-156 YANG Hang, QIN Kezhang, Wu Peng, et al. Tectonic setting, mineralization and ore-controlling factors of porphyry Cu-Mo-Au deposits[J]. Mineral Deposits, 2023, 42: 128-156.
杨阳, 王晓霞, 柯昌辉, 等. 豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J]. 中国地质, 2012, 39(6): 1525−1542. YANG Yang, WANG Xiaoxia, KE Changhui, et al. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province[J]. Geology in China, 2012, 39(6): 1525−1542.
叶会寿, 毛景文, 李永峰, 等. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义[J]. 地质学报, 2006: 1078-1088 doi: 10.3321/j.issn:0001-5717.2006.07.014 YE Huishou, MAO Jingwen, LI Yongfeng, et al. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication[J]. Acta Geol. Sin. , 2006, 80: 1078-1088. doi: 10.3321/j.issn:0001-5717.2006.07.014
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25: 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 2019, 25: 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报, 1995: 101-114 ZHANG Guowei, ZHANG Zongqing, DONG Yunpeng, et al. Nature of main tectono-lithostratigraphic units of the Qinling orogen: implications for the tectonic evolution[J]. Acta Petrol. Sinica, 1995, 11: 101-114.
张国伟, 张本仁, 肖庆辉, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001 ZHANG Guowei, ZHANG Benren, XIAO Qinghui, et al. Qinling orogenic belt and continental dynamics [M]. Beijing: Science Press, 2001.
张云辉. 栾川地区晚中生代构造-岩浆演化与成矿关系探讨[D]. 北京: 中国地质大学(北京), 2014 ZHANG Yunhui. Late-Mesozoic tectonic-magma evolution and its relationship with mineralization in Luanchuan County[D]. Beijing: China University of Geosciences (Beijing), 2014.
郑俊, 朱赖民, 姜航, 等. 南秦岭柞水-山阳矿集区印支期和燕山期花岗岩对比研究[J]. 矿物岩石地球化学通报, 2015, 34: 1155-1172 ZHENG Jun, ZHU Laimin, JIANG Hang, et al. A Comparisonal Study on the Indosinian and Yanshanian Granites of the Zhashui-Shanyang ore Cluster District in the Southern Qinling, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34: 1155-1172.
朱赖民, 张国伟, 郭波, 等. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J]. 地质学报, 2008: 204-220 ZHU Laimin, ZHANG Guowei, GUO Bo, et al. U–Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and its metallogenetic geodynamical setting[J]. Acta Geologica Sinica, 2008, 82: 204-220.
朱赖民, 郑俊, 熊潇, 等. 南秦岭柞水—山阳矿集区园子街岩体岩石地球化学与成矿潜力探讨[J]. 地学前缘, 2019, 26: 189-205. ZHU Laimin, ZHENG Jun, XIONG Xiao, et al. Petrogeochemistry and mineralization potential of the Yuanzijie intrusion in the ZhashuiShanyang ore deposit cluster in southern Qinling[J]. Earth Science Frontiers, 2019, 26: 189.
Andersson Stefan S, Wagner Thomas, Jonsson Erik, et al. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 255: 163-187. doi: 10.1016/j.gca.2019.04.014
Ayers John C, Watson E Bruce. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 335: 365-375.
Ayers John C, Watson E Bruce. Apatite/fluid partitioning of rare-earth elements and strontium: Experimental results at 1.0 GPa and 1000 C and application to models of fluid-rock interaction[J]. Chemical Geology, 1993, 110: 299-314. doi: 10.1016/0009-2541(93)90259-L
Ballard Julian R, Palin Michael J, Campbell Ian H. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144: 347-364. doi: 10.1007/s00410-002-0402-5
Bao Zhiwei, Wang Christina Yan, Zhao Taiping, et al. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China[J]. Ore Geology Reviews, 2014, 57: 132-153. doi: 10.1016/j.oregeorev.2013.09.008
Berndt Jasper, Koepke JÜrgen, Holtz Francois. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa[J]. Journal of Petrology, 2005, 46: 135-167.
Berry Andrew J, Harris Anthony C, Kamenetsky Vadim S, et al. The speciation of copper in natural fluid inclusions at temperatures up to 700 C[J]. Chemical Geology, 2009, 259: 2-7. doi: 10.1016/j.chemgeo.2008.10.018
Boudreau Ae, Kruger Fj. Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex[J]. Economic geology, 1990, 85: 737-745. doi: 10.2113/gsecongeo.85.4.737
Buddington Arthur F, Lindsley Dh. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5: 310-357. doi: 10.1093/petrology/5.2.310
Cao Mingjian, Li Guangming, Qin Kezhang, et al. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization[J]. Resource Geology, 2012, 62: 63-83. doi: 10.1111/j.1751-3928.2011.00180.x
Chelle-Michou Cyril, Chiaradia Massimo. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits[J]. Contributions to Mineralogy and Petrology, 2017, 172: 105. doi: 10.1007/s00410-017-1417-2
Chelle-Michou Cyril, Chiaradia Massimo, Ovtcharova Maria, et al. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)[J]. LITHOS, 2014, 198: 129-140.
Chen Lei, Yan Zhen, Wang Zongqi, et al. Contributions of juvenile lower crust and mantle components to porphyry Cu deposits in an intracontinental setting: evidence from late Mesozoic porphyry Cu deposits in the South Qinling Orogenic Belt, Central China[J]. Mineralium Deposita, 2023, 58: 489-509. doi: 10.1007/s00126-022-01138-8
Chiaradia Massimo. How much water in basaltic melts parental to porphyry copper deposits?[J]. Frontiers in Earth Science, 2020, 8: 138.
Cooke David R, Hollings Peter, Walshe John L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100: 801-818. doi: 10.2113/gsecongeo.100.5.801
Cooke D R, Hollings P, Wilkinson J J, et al. Geochemistry of porphyry deposits[J]. In: editor(s): Holland H D, Turekian KK (editors). Treatise on Geochemistry (Second Edition)[M]. Elsevier, 2014: 357−381.
Dong Yunpeng, Sun Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006
Du Jingguo, Wang Gongwen, Jia Lihui. In situ major and trace element compositions of apatites from Luanchuan orecluster: Implications for porphyry Mo mineralization[J]. Ore Geology Reviews, 2019, 115: 103174. doi: 10.1016/j.oregeorev.2019.103174
Gammons Ch, Williams-Jones Ae. Chemical mobility of gold in the porphyry-epithermal environment[J]. Economic geology, 1997, 92: 45-59. doi: 10.2113/gsecongeo.92.1.45
Griffin Wl, Wang Xiang, Jackson Se, et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. LITHOS, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8
Grondahl Carter, Zajacz Zoltán. Sulfur and chlorine budgets control the ore fertility of arc magmas[J]. Nature communications, 2022, 13: 4218. doi: 10.1038/s41467-022-31894-0
Guo Bo, Yan Changhai, Zhang Shouting, et al. Geochemical and geological characteristics of the granitic batholith and Yuku concealed Mo–W deposit at the southern margin of the North China Craton[J]. Geological Journal, 2020, 55: 95-116. doi: 10.1002/gj.3372
Hart Craig Jr, Mair John L, Goldfarb Richard J, et al. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2004, 95: 339-356.
Hou Zengqian, Duan Lianfeng, Lu Yongjun, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic geology, 2015a, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541
Hou Zengqian, Yang Zhiming, Lu Yongjun, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015b, 43: 247-250. doi: 10.1130/G36362.1
Hou Zengqian, Zhang Hongrui. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015c, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026
Hou Zengqian, Li Qiuyun, Gao Yongfeng, et al. Lower-Crustal magmatic hornblendite in North China Craton: insight into the genesis of porphyry Cu deposits[J]. Economic geology, 2015d, 110: 1879-1904. doi: 10.2113/econgeo.110.7.1879
Hou Zengqian, Zhang Hongrui, Pan Xiaofei, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39: 21-45. doi: 10.1016/j.oregeorev.2010.09.002
Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48: 173-192. doi: 10.1007/s00126-012-0415-6
Hu Xin-Kai, Tang Li, Zhang Shou-Ting, et al. Geochemistry, zircon U-Pb geochronology and Hf-O isotopes of the Late Mesozoic granitoids from the Xiong'ershan area, East Qinling Orogen, China: Implications for petrogenesis and molybdenum metallogeny[J]. Ore Geology Reviews, 2020, 124: 103653. doi: 10.1016/j.oregeorev.2020.103653
Imai Akira. Metallogenesis of porphyry Cu deposits of the western Luzon arc, Philippines: K‐Ar ages, SO3 contents of microphenocrystic apatite and significance of intrusive rocks[J]. Resource Geology, 2002, 52: 147-161. doi: 10.1111/j.1751-3928.2002.tb00127.x
Imai Akira. Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cu metallogenesis in the Western Pacific Island arcs[J]. Resource Geology, 2004, 54: 357-372. doi: 10.1111/j.1751-3928.2004.tb00211.x
Jugo Pedro J. Sulfur content at sulfide saturation in oxidized magmas[J]. Geology, 2009, 37: 415-418. doi: 10.1130/G25527A.1
Kemp Ais, Hawkesworth Cj, Paterson Ba, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. nature, 2006, 439: 580-583. doi: 10.1038/nature04505
Kendall-Langley Lillian A, Kemp Anthony Is, Hawkesworth Chris J, et al. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon[J]. Contributions to Mineralogy and Petrology, 2021, 176: 1-19. doi: 10.1007/s00410-020-01755-4
Keppler Hans, Wyllie Peter J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O− HCl and haplogranite-H2O− HF[J]. Contributions to Mineralogy and Petrology, 1991, 109: 139-150. doi: 10.1007/BF00306474
Ketcham Richard A Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites[J]. American Mineralogist, 2015, 100: 1620-1623. doi: 10.2138/am-2015-5171
Koleszar Am, Saal Ae, Hauri Eh, et al. The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions[J]. Earth and Planetary Science Letters, 2009, 287: 442-452. doi: 10.1016/j.jpgl.2009.08.029
Kress Victor C, Carmichael Ian Se. The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states[J]. Contributions to Mineralogy and Petrology, 1991, 108: 82-92. doi: 10.1007/BF00307328
Li Dong, Han Jiangwei, Zhang Shouting, et al. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis[J]. Journal of Asian Earth Sciences, 2015a, 111: 663-680. doi: 10.1016/j.jseaes.2015.05.017
Li Dong, Zhang Shou-Ting, Yan Chang-Hai, et al. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China[J]. Journal of Geodynamics, 2012, 61: 94-104. doi: 10.1016/j.jog.2012.02.005
Li Huijuan, Hermann Joerg Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 C: A new experimentally derived thermodynamic model[J]. American Mineralogist, 2017, 102: 580-594. doi: 10.2138/am-2017-5891
Li Nuo, Chen Yan-Jing, Santosh M. , et al. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance[J]. Earth-Science Reviews, 2018, 182: 141-173. doi: 10.1016/j.earscirev.2018.05.004
Li Z X A, Lee C T A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts[J]. Earth and Planetary Science Letters, 2004, 228: 483−493.
Loader Matthew A, Wilkinson Jamie J, Armstrong Robin N The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J]. Earth and Planetary Science Letters, 2017, 472: 107-119. doi: 10.1016/j.jpgl.2017.05.010
Loucks Rr. Distinctive composition of copper-ore-forming arcmagmas[J]. Australian Journal of Earth Sciences, 2014, 61: 5-16. doi: 10.1080/08120099.2013.865676
Loucks Robert R, Fiorentini Marco L, Henríquez Gonzalo J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 61: egaa034. doi: 10.1093/petrology/egaa034
Lowell J David, Guilbert John M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic geology, 1970, 65: 373-408. doi: 10.2113/gsecongeo.65.4.373
Lu Yong-Jun, Kerrich Robert, Kemp Anthony Is, et al. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny[J]. Economic geology, 2013, 108: 1541-1576. doi: 10.2113/econgeo.108.7.1541
Lu Yong-Jun, Loucks Robert R, Fiorentini Marco L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet[J]. Geology, 2015, 43: 583-586. doi: 10.1130/G36734.1
Luo Biji, Zhang Hongfei, Zhang Liqi, et al. The magma plumbing system of Mesozoic Shanyang porphyry groups, South Qinling and implications for porphyry copper mineralization[J]. Earth and Planetary Science Letters, 2020, 543: 116346. doi: 10.1016/j.jpgl.2020.116346
Maniar Papu D, Piccoli Philip M. Tectonic discrimination of granitoids[J]. Geological society of America bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao J W, Xie G Q, Pirajno Franco, et al. Late Jurassic–Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57: 51-78. doi: 10.1080/08120090903416203
Mao J W, Pirajno Franco, Xiang Jf, et al. Mesozoic molybdenum deposits in the east Qinling–Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293. doi: 10.1016/j.oregeorev.2011.07.009
Mao J W, Xie Gq, Bierlein Frank, et al. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4607-4626. doi: 10.1016/j.gca.2008.06.027
Mccubbin Fm, Jones Rh. Naming materials in the magma/igneous rock system[J]. Elements, 2015, 11: 183-188. doi: 10.2113/gselements.11.3.183
Middlemost Eric Ak. Extraterrestrial apatite: planetary geochemistry to astrobiology[J]. Earth-Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9
Munoz Marcia, Charrier R, Fanning Cm, et al. Zircon trace element and O–Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas[J]. Journal of Petrology, 2012, 53: 1091-1122. doi: 10.1093/petrology/egs010
Naney Mt. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems[J]. American journal of science, 1983, 283: 993-1033. doi: 10.2475/ajs.283.10.993
Parat Fleurice, Holtz François, Klügel Andreas. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology, 2011, 162: 463-478. doi: 10.1007/s00410-011-0606-7
Pearce Julian A, Harris Nigel Bw, Tindle Andrew G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956
Peccerillo Angelo, Taylor Sr. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745
Qian Zesheng, Yang Fan, Liu Chao, et al. Late Mesozoic Huangbeiling S-type granite in the East Qinling Orogen, China: Geochronology, petrogenesis and implications for tectonic evolution[J]. Geochemistry, 2022, 82: 125857. doi: 10.1016/j.chemer.2021.125857
Richards Jeremy P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40: 1-26. doi: 10.1016/j.oregeorev.2011.05.006
Richards Jeremy P. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision[J]. Ore Geology Reviews, 2015, 70: 323-345. doi: 10.1016/j.oregeorev.2014.11.009
Richards Jeremy P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Ridolfi Filippo, Renzulli Alberto, Puerini Matteo. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160: 45-66. doi: 10.1007/s00410-009-0465-7
Riker Jenny, Humphreys Madeleine Cs, Brooker Richard A, et al. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite–silicate melt[J]. American Mineralogist, 2018, 103: 260-270. doi: 10.2138/am-2018-6187CCBY
Shu Qihai, Chang Zhaoshan, Lai Yong, et al. Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China[J]. Mineralium Deposita, 2019, 54: 645-656. doi: 10.1007/s00126-019-00867-7
Sillitoe Richard H. Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388. doi: 10.1080/08120099708728318
Sillitoe Richard H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic geology, 1972, 67: 184-197. doi: 10.2113/gsecongeo.67.2.184
Sillitoe Richard H. Porphyry copper systems[J]. Economic geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3
Sisson Tw, Grove Tl. Experimental investigations of the role of H 2 O in calc-alkaline differentiation and subduction zone magmatism[J]. Contributions to Mineralogy and Petrology, 1993, 113: 143-166. doi: 10.1007/BF00283225
Sun Weidong, Huang Rui-Fang, Li He, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65: 97-131. doi: 10.1016/j.oregeorev.2014.09.004
Sun S-S, Mcdonough William F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Tang Li, Wagner Thomas, Fusswinkel Tobias, et al. Fluid inclusion evidence for the magmatic-hydrothermal evolution of closely linked porphyry Au, porphyry Mo, and barren systems, East Qinling, China[J]. GSA Bulletin, 2022, 134: 1529-1548. doi: 10.1130/B36170.1
Tang Li, Zhao Yu, Zhang Shou-Ting, et al. Origin and evolution of a porphyry-breccia system: Evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, China[J]. Gondwana Research, 2021, 89: 88-104. doi: 10.1016/j.gr.2020.08.013
Trail Dustin, Watson E Bruce, Tailby Nicholas D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 2012, 97: 70-87. doi: 10.1016/j.gca.2012.08.032
Ulmer Peter, Kaegi Ralf, Müntener Othmar. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1· 0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity[J]. Journal of Petrology, 2018, 59: 11-58. doi: 10.1093/petrology/egy017
Wang Rui, Richards Jeremy P, Hou Zeng-Qian, et al. Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry Cu-Mo±Au mineralization[J]. Economic geology, 2014a, 109: 1943-1965. doi: 10.2113/econgeo.109.7.1943
Wang Rui, Richards Jeremy P, Hou Zengqian, et al. Increased magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet[J]. Economic geology, 2014b, 109: 1315-1339. doi: 10.2113/econgeo.109.5.1315
Wang Rui, Weinberg Roberto F, Collins William J, et al. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181: 122-143. doi: 10.1016/j.earscirev.2018.02.019
Webster James D, Tappen Christine M, Mandeville Charles W. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta, 2009, 73: 559-581. doi: 10.1016/j.gca.2008.10.034
Williamson Bj, Herrington Rj, Morris A. Porphyry copper enrichment linked to excess aluminium in plagioclase[J]. Nature Geoscience, 2016, 9: 237-241. doi: 10.1038/ngeo2651
Wright Jb. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106: 370-384. doi: 10.1017/S0016756800058222
Wu Chao, Chen Huayong, Lu Yongjun. Magmatic water content and crustal evolution control on porphyry systems: insights from the Central Asian Orogenic Belt[J]. Journal of Petrology, 2021, 62: egab021. doi: 10.1093/petrology/egab021
Xie Gui Qing, Mao Jing Wen, Wang Rui Ting, et al. Origin of the Lengshuigou porphyry–skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits[J]. Mineralium Deposita, 2017, 52: 621-639. doi: 10.1007/s00126-016-0688-2
Xie Guiqing, Mao Jingwen, Wang Ruiting, et al. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny[J]. Journal of Asian Earth Sciences, 2015, 103: 184-197. doi: 10.1016/j.jseaes.2014.09.018
Xiong Xiao, Zhu Laimin, Zhang Guowei, et al. Origin of the Xiaohekou skarn copper deposit and related granitoids in the Zha-Shan ore cluster area, South Qinling, China[J]. Ore Geology Reviews, 2019, 114: 103143. doi: 10.1016/j.oregeorev.2019.103143
Xu Lei-Luo, Bi Xian-Wu, Zhang Xing-Chun, et al. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology, 2023, 616: 121238. doi: 10.1016/j.chemgeo.2022.121238
Xue Fei, Wang Gongwen, Santosh M, et al. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration[J]. Journal of Asian Earth Sciences, 2018, 157: 57−77.
Yang Fan, Xue Fei, Santosh M, et al. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications[J]. Geoscience Frontiers, 2019, 10(5): 1803−1821.
Yang Fan, Maojing Wen, Ren Weidong, et al. Temporal evolution and origin of the Yumugou Mo-W deposit, East Qinling, China: Evidence from molybdenite Re-Os age and U-Pb dating and geochemistry of titanite[J]. Ore Geology Reviews, 2022, 150: 105172.
Yang Zhi-Ming, Lu Yong-Jun, Hou Zeng-Qian, et al. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56: 227-254. doi: 10.1093/petrology/egu076
Zhang Chan-Chan, Sun Wei-Dong, Wang Jin-Tuan, et al. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China[J]. Geochimica et Cosmochimica Acta, 2017, 206: 343-363. doi: 10.1016/j.gca.2017.03.013
Zhang Zhong-Yu, Wang Yin-Hong, Zhang Fang-Fang, et al. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U–Pb dating, Lu–Hf isotopes and molybdenite Re–Os systematics[J]. Ore Geology Reviews, 2021, 138: 104416. doi: 10.1016/j.oregeorev.2021.104416
Zhang Yunhui, Cao Huawen, Xu Mo, et al. Petrogenesis of the late Mesozoic highly fractionated I-type granites in the Luanchuan district: implications for the tectono-magmatic evolution of eastern Qinling[J]. Geosciences Journal, 2018, 22(2): 253–272.
Zhang Zhong‐Yu, Wang Yin‐Hong, Liu Jia‐Jun, et al. Origin of the Tudigou intrusion and associated porphyry Cu mineralization in the southern Qinling, Central China: Implication for regional tectonic setting[J]. Geological Journal, 2023, 58: 368-392. doi: 10.1002/gj.4598
Zheng Yong-Fei. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223-1254. doi: 10.1016/j.gsf.2019.02.003
Zou Shaohao, Xu Deru, Deng Teng, et al. Geochemical variations of the Late Mesozoic granitoids in the southern margin of North China Craton: A possible link to the tectonic transformation from compression to extension[J]. Gondwana Research, 2019, 75: 118-133. doi: 10.1016/j.gr.2019.04.012
-
期刊类型引用(5)
1. 田智博,苟龙龙,徐晓飞,刘学锋,毛振宇. 秦岭造山带涝峪地区宽坪岩群变质作用温压条件及原位Rb–Sr年代学研究. 西北地质. 2025(01): 1-26 . 本站查看
2. 孟五一,张振,高永宝,魏立勇,贾彬,郑鑫,刘宁波. 南秦岭新发现王庄金矿床矿物成分及其地质意义. 西北地质. 2024(04): 157-169 . 本站查看
3. 赵江林,唐利,田浩浩,赵凤芸,盛渊明,曾涛,陈龙龙,张寿庭. 南秦岭双元沟铜矿床成矿斑岩的黑云母和角闪石成分特征及成矿意义. 成都理工大学学报(自然科学版). 2024(05): 867-879 . 百度学术
4. 陈雅鹏,唐利,胡昕凯,盛渊明,曾涛,陈龙龙,赵江林. 豫西栾川矿集区南泥湖和石宝沟岩体锆石U-Pb-Hf-O同位素特征及地质意义. 西北地质. 2024(06): 278-289 . 本站查看
5. 刘新伟,薛玉山,寸小妮. 南秦岭龙头沟金矿床石英Rb-Sr同位素测年及其地质意义. 地质找矿论丛. 2024(04): 469-477 . 百度学术
其他类型引用(0)